DeepSplice:通过RNA-seq揭示的新型剪接连接的深度分类

Yi Zhang, Xinan Liu, J. MacLeod, Jinze Liu
{"title":"DeepSplice:通过RNA-seq揭示的新型剪接连接的深度分类","authors":"Yi Zhang, Xinan Liu, J. MacLeod, Jinze Liu","doi":"10.1109/BIBM.2016.7822541","DOIUrl":null,"url":null,"abstract":"Alternative splicing (AS) is a regulated process that enables the production of multiple mRNA transcripts from a single multi-exon gene. The availability of large-scale RNA-seq datasets has made it possible to predict splice junctions, as well as splice sites through spliced alignment to the reference genome. This greatly enhances the capability to decipher gene structures and explore the diversity of splicing variants. However, existing ab initio aligners are vulnerable to false positive spliced alignments as a result of sequence errors and random sequence matches. These spurious alignments can lead to a significant set of false positive splice junction predictions, confusing downstream analyses of splice variant detection and abundance estimation. In this work, we illustrate that splice junction sequence characteristics can be ascertained from experimental data with deep learning techniques. We employ deep convolutional neural networks for a novel splice junction classification tool named DeepSplice that (i) outperforms state-of-the-art methods for predicting splice sites, (ii) shows high computational efficiency and (iii) can be applied to self-defined training data by users.","PeriodicalId":345384,"journal":{"name":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"DeepSplice: Deep classification of novel splice junctions revealed by RNA-seq\",\"authors\":\"Yi Zhang, Xinan Liu, J. MacLeod, Jinze Liu\",\"doi\":\"10.1109/BIBM.2016.7822541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Alternative splicing (AS) is a regulated process that enables the production of multiple mRNA transcripts from a single multi-exon gene. The availability of large-scale RNA-seq datasets has made it possible to predict splice junctions, as well as splice sites through spliced alignment to the reference genome. This greatly enhances the capability to decipher gene structures and explore the diversity of splicing variants. However, existing ab initio aligners are vulnerable to false positive spliced alignments as a result of sequence errors and random sequence matches. These spurious alignments can lead to a significant set of false positive splice junction predictions, confusing downstream analyses of splice variant detection and abundance estimation. In this work, we illustrate that splice junction sequence characteristics can be ascertained from experimental data with deep learning techniques. We employ deep convolutional neural networks for a novel splice junction classification tool named DeepSplice that (i) outperforms state-of-the-art methods for predicting splice sites, (ii) shows high computational efficiency and (iii) can be applied to self-defined training data by users.\",\"PeriodicalId\":345384,\"journal\":{\"name\":\"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2016.7822541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2016.7822541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

选择性剪接(AS)是一种受调控的过程,可以使单个多外显子基因产生多个mRNA转录物。大规模RNA-seq数据集的可用性使得通过与参考基因组的剪接比对来预测剪接连接以及剪接位点成为可能。这大大提高了破译基因结构和探索剪接变异多样性的能力。然而,现有的从头算比对器由于序列错误和随机序列匹配而容易出现拼接比对的假阳性。这些虚假的比对可能导致一组显著的假阳性剪接连接预测,混淆剪接变异检测和丰度估计的下游分析。在这项工作中,我们说明了剪接序列特征可以通过深度学习技术从实验数据中确定。我们将深度卷积神经网络用于一种名为DeepSplice的新型剪接结分类工具,该工具(i)优于最先进的剪接位点预测方法,(ii)显示出高计算效率,(iii)可以应用于用户自定义的训练数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DeepSplice: Deep classification of novel splice junctions revealed by RNA-seq
Alternative splicing (AS) is a regulated process that enables the production of multiple mRNA transcripts from a single multi-exon gene. The availability of large-scale RNA-seq datasets has made it possible to predict splice junctions, as well as splice sites through spliced alignment to the reference genome. This greatly enhances the capability to decipher gene structures and explore the diversity of splicing variants. However, existing ab initio aligners are vulnerable to false positive spliced alignments as a result of sequence errors and random sequence matches. These spurious alignments can lead to a significant set of false positive splice junction predictions, confusing downstream analyses of splice variant detection and abundance estimation. In this work, we illustrate that splice junction sequence characteristics can be ascertained from experimental data with deep learning techniques. We employ deep convolutional neural networks for a novel splice junction classification tool named DeepSplice that (i) outperforms state-of-the-art methods for predicting splice sites, (ii) shows high computational efficiency and (iii) can be applied to self-defined training data by users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The role of high performance, grid and cloud computing in high-throughput sequencing A novel algorithm for identifying essential proteins by integrating subcellular localization CNNsite: Prediction of DNA-binding residues in proteins using Convolutional Neural Network with sequence features Inferring Social Influence of anti-Tobacco mass media campaigns Emotion recognition from multi-channel EEG data through Convolutional Recurrent Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1