{"title":"有无换热作用下旋转通道流动的大涡模拟","authors":"N. Meng, R. Pletcher","doi":"10.1115/imece2000-1579","DOIUrl":null,"url":null,"abstract":"\n Large eddy simulation of rotating channel flow with and without heat transfer is reported. The rotation axis is parallel to the spanwise direction of the parallel plate channel. An implicit finite-volume scheme was used to solve the preconditioned time-dependent filtered Navier-Stokes equations using a dynamic subgrid-scale model to account for the subgrid-scale effects. Comparisons are made with available results in the literature for isothermal rotating flows. The combined effects of rotation and heat transfer on the structure of turbulence channel flow is discussed.","PeriodicalId":221080,"journal":{"name":"Heat Transfer: Volume 5","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Large Eddy Simulation of Rotating Channel Flows With and Without Heat Transfer\",\"authors\":\"N. Meng, R. Pletcher\",\"doi\":\"10.1115/imece2000-1579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Large eddy simulation of rotating channel flow with and without heat transfer is reported. The rotation axis is parallel to the spanwise direction of the parallel plate channel. An implicit finite-volume scheme was used to solve the preconditioned time-dependent filtered Navier-Stokes equations using a dynamic subgrid-scale model to account for the subgrid-scale effects. Comparisons are made with available results in the literature for isothermal rotating flows. The combined effects of rotation and heat transfer on the structure of turbulence channel flow is discussed.\",\"PeriodicalId\":221080,\"journal\":{\"name\":\"Heat Transfer: Volume 5\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer: Volume 5\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2000-1579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 5","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Large Eddy Simulation of Rotating Channel Flows With and Without Heat Transfer
Large eddy simulation of rotating channel flow with and without heat transfer is reported. The rotation axis is parallel to the spanwise direction of the parallel plate channel. An implicit finite-volume scheme was used to solve the preconditioned time-dependent filtered Navier-Stokes equations using a dynamic subgrid-scale model to account for the subgrid-scale effects. Comparisons are made with available results in the literature for isothermal rotating flows. The combined effects of rotation and heat transfer on the structure of turbulence channel flow is discussed.