随机场的多分辨率模型及其在统计图像处理中的应用

H. Krim, A. Willsky, W. Karl
{"title":"随机场的多分辨率模型及其在统计图像处理中的应用","authors":"H. Krim, A. Willsky, W. Karl","doi":"10.1109/WITS.1994.513887","DOIUrl":null,"url":null,"abstract":"We describe a probabilistic framework for optimal multiresolution processing and analysis of spatial phenomena. Our developed multiresolution (MR) models are useful in describing random processes and fields. The scale recursive nature of the resulting models, leads to extremely efficient algorithms for optimal estimation and likelihood calculation. These models, which are described, have also provided a framework for data fusion, and produced new solutions to problems in computer vision (optical flow estimation), remote sensing (oceanography where dimensional complexity is in thousands), and various inverse problems of mathematical physics.","PeriodicalId":423518,"journal":{"name":"Proceedings of 1994 Workshop on Information Theory and Statistics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multiresolution models for random fields and their use in statistical image processing\",\"authors\":\"H. Krim, A. Willsky, W. Karl\",\"doi\":\"10.1109/WITS.1994.513887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a probabilistic framework for optimal multiresolution processing and analysis of spatial phenomena. Our developed multiresolution (MR) models are useful in describing random processes and fields. The scale recursive nature of the resulting models, leads to extremely efficient algorithms for optimal estimation and likelihood calculation. These models, which are described, have also provided a framework for data fusion, and produced new solutions to problems in computer vision (optical flow estimation), remote sensing (oceanography where dimensional complexity is in thousands), and various inverse problems of mathematical physics.\",\"PeriodicalId\":423518,\"journal\":{\"name\":\"Proceedings of 1994 Workshop on Information Theory and Statistics\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 Workshop on Information Theory and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WITS.1994.513887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 Workshop on Information Theory and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WITS.1994.513887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们描述了空间现象的最佳多分辨率处理和分析的概率框架。我们开发的多分辨率(MR)模型在描述随机过程和场方面是有用的。所得到的模型的尺度递归性质,导致极其有效的算法,最优估计和似然计算。所描述的这些模型也为数据融合提供了一个框架,并为计算机视觉(光流估计)、遥感(维度复杂性为数千的海洋学)和各种数学物理逆问题提供了新的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiresolution models for random fields and their use in statistical image processing
We describe a probabilistic framework for optimal multiresolution processing and analysis of spatial phenomena. Our developed multiresolution (MR) models are useful in describing random processes and fields. The scale recursive nature of the resulting models, leads to extremely efficient algorithms for optimal estimation and likelihood calculation. These models, which are described, have also provided a framework for data fusion, and produced new solutions to problems in computer vision (optical flow estimation), remote sensing (oceanography where dimensional complexity is in thousands), and various inverse problems of mathematical physics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large deviations and consistent estimates for Gibbs random fields Markov chains for modeling and analyzing digital data signals Maximized mutual information using macrocanonical probability distributions Coding for noisy feasible channels Identification via compressed data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1