{"title":"聚类进化算法的新遗传算子","authors":"D. Ferrari, L. N. de Castro","doi":"10.1109/BRICS-CCI-CBIC.2013.20","DOIUrl":null,"url":null,"abstract":"Finding a good clustering solution for an unknown problem is a challenging task. Evolutionary algorithms have proved to be reliable methods to search for high quality solutions to complex problems. The present paper proposes a new set of genetic operators for the Fast Evolutionary Algorithm for Clustering (Fast-EAC) to improve the solution quality and computational efficiency. The new algorithm, called EAC-II, is compared with its original version in terms of quality of solutions and efficiency over several problems from the literature.","PeriodicalId":306195,"journal":{"name":"2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"New Genetic Operators for the Evolutionary Algorithm for Clustering\",\"authors\":\"D. Ferrari, L. N. de Castro\",\"doi\":\"10.1109/BRICS-CCI-CBIC.2013.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finding a good clustering solution for an unknown problem is a challenging task. Evolutionary algorithms have proved to be reliable methods to search for high quality solutions to complex problems. The present paper proposes a new set of genetic operators for the Fast Evolutionary Algorithm for Clustering (Fast-EAC) to improve the solution quality and computational efficiency. The new algorithm, called EAC-II, is compared with its original version in terms of quality of solutions and efficiency over several problems from the literature.\",\"PeriodicalId\":306195,\"journal\":{\"name\":\"2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BRICS-CCI-CBIC.2013.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRICS-CCI-CBIC.2013.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New Genetic Operators for the Evolutionary Algorithm for Clustering
Finding a good clustering solution for an unknown problem is a challenging task. Evolutionary algorithms have proved to be reliable methods to search for high quality solutions to complex problems. The present paper proposes a new set of genetic operators for the Fast Evolutionary Algorithm for Clustering (Fast-EAC) to improve the solution quality and computational efficiency. The new algorithm, called EAC-II, is compared with its original version in terms of quality of solutions and efficiency over several problems from the literature.