HAU-Net:用于视网膜血管图像分割的混合注意力U-NET

Jialin Chen, Chunmei Ma, Y. Li, Shuaikun Fan, Rui Shi, Xi-ping Yan
{"title":"HAU-Net:用于视网膜血管图像分割的混合注意力U-NET","authors":"Jialin Chen, Chunmei Ma, Y. Li, Shuaikun Fan, Rui Shi, Xi-ping Yan","doi":"10.1117/12.3000792","DOIUrl":null,"url":null,"abstract":"Accurate semantic segmentation of retinal images is very important for intelligent diagnosis of eye diseases. However, the large number of tiny blood vessels and the uneven distribution of blood vessels in the retina pose many challenges to the segmentation algorithm. In this paper, we propose a Hybrid Attention Fusion U-Net model (HAU-Net) for segmentation of retinal blood vessel images. Specifically, we use the U-NET network as the backbone network, and bridge attention is introduced into the network to improve the efficiency of vessel feature extraction. In addition, we introduce channel attention and spatial attention modules at the bottom of the network, to obtain coarse-to-fine feature representation of retinal vessel images, so as to improve the accuracy of vascular image segmentation. In order to verify the model's performance, we conducted extensive experiments on DRIVE and CHASE_DB1 datasets, and the accuracy reach 97.03% and 97.72%, respectively, which are better than CAR-UNet and MC-UNet.","PeriodicalId":210802,"journal":{"name":"International Conference on Image Processing and Intelligent Control","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HAU-Net: hybrid attention U-NET for retinal blood vessels image segmentation\",\"authors\":\"Jialin Chen, Chunmei Ma, Y. Li, Shuaikun Fan, Rui Shi, Xi-ping Yan\",\"doi\":\"10.1117/12.3000792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate semantic segmentation of retinal images is very important for intelligent diagnosis of eye diseases. However, the large number of tiny blood vessels and the uneven distribution of blood vessels in the retina pose many challenges to the segmentation algorithm. In this paper, we propose a Hybrid Attention Fusion U-Net model (HAU-Net) for segmentation of retinal blood vessel images. Specifically, we use the U-NET network as the backbone network, and bridge attention is introduced into the network to improve the efficiency of vessel feature extraction. In addition, we introduce channel attention and spatial attention modules at the bottom of the network, to obtain coarse-to-fine feature representation of retinal vessel images, so as to improve the accuracy of vascular image segmentation. In order to verify the model's performance, we conducted extensive experiments on DRIVE and CHASE_DB1 datasets, and the accuracy reach 97.03% and 97.72%, respectively, which are better than CAR-UNet and MC-UNet.\",\"PeriodicalId\":210802,\"journal\":{\"name\":\"International Conference on Image Processing and Intelligent Control\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Image Processing and Intelligent Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3000792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Image Processing and Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3000792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

视网膜图像的准确语义分割对于眼部疾病的智能诊断至关重要。然而,视网膜中细小血管数量多,血管分布不均匀,给分割算法带来了诸多挑战。本文提出了一种用于视网膜血管图像分割的混合注意力融合U-Net模型(HAU-Net)。具体而言,我们采用U-NET网络作为骨干网,并在网络中引入桥式关注,以提高船舶特征提取的效率。此外,我们在网络底部引入通道注意和空间注意模块,获得视网膜血管图像从粗到细的特征表示,从而提高血管图像分割的精度。为了验证模型的性能,我们在DRIVE和CHASE_DB1数据集上进行了大量的实验,准确率分别达到97.03%和97.72%,优于CAR-UNet和MC-UNet。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HAU-Net: hybrid attention U-NET for retinal blood vessels image segmentation
Accurate semantic segmentation of retinal images is very important for intelligent diagnosis of eye diseases. However, the large number of tiny blood vessels and the uneven distribution of blood vessels in the retina pose many challenges to the segmentation algorithm. In this paper, we propose a Hybrid Attention Fusion U-Net model (HAU-Net) for segmentation of retinal blood vessel images. Specifically, we use the U-NET network as the backbone network, and bridge attention is introduced into the network to improve the efficiency of vessel feature extraction. In addition, we introduce channel attention and spatial attention modules at the bottom of the network, to obtain coarse-to-fine feature representation of retinal vessel images, so as to improve the accuracy of vascular image segmentation. In order to verify the model's performance, we conducted extensive experiments on DRIVE and CHASE_DB1 datasets, and the accuracy reach 97.03% and 97.72%, respectively, which are better than CAR-UNet and MC-UNet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of design factors of an interactive interface of intangible cultural heritage APP based on user experience Video description method with fusion of instance-aware temporal features A control system for fine farming of apple trees Chinese image description evaluation method based on target domain semantic constraints YOLO-H: a lightweight object detection framework for helmet wearing detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1