集成在微流体装置中的弹性磁泵

Jacob L. Binsley, E. L. Martin, Thomas O Myers, S. Pagliara, F. Ogrin
{"title":"集成在微流体装置中的弹性磁泵","authors":"Jacob L. Binsley, E. L. Martin, Thomas O Myers, S. Pagliara, F. Ogrin","doi":"10.3390/MICROMACHINES2021-09590","DOIUrl":null,"url":null,"abstract":"Many lab-on-a-chip devices require a connection to an external pumping system in order to perform their function. While this is not problematic in typical laboratory environments, it is not always practical when applied to point-of-care testing, which is best utilised outside of the laboratory. Therefore, there has been a large amount of ongoing research into producing integrated microfluidic components capable of generating effective fluid flow from on-board the device. This research aims to introduce a system which can produce practical flow rates, and be easily fabricated and actuated using readily available techniques and materials. We show how an asymmetric elasto-magnetic system, inspired by Purcell’s 3-link swimmer can provide this solution through the generation of non-reciprocal motion in an enclosed environment. The device is fabricated monolithically within a microfluidic channel at the time of manufacture, and is actuated using a weak, oscillating magnetic field. The flow rate can be altered dynamically, and the resultant flow direction can be reversed by adjusting the frequency of the driving field. The device is proven, experimentally and numerically, to operate effectively when applied to fluids with a range of viscosities. Such a device may be able to replace external pumping systems in more portable applications.","PeriodicalId":137788,"journal":{"name":"Proceedings of Micromachines 2021 — 1st International Conference on Micromachines and Applications (ICMA2021)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elasto-Magnetic Pumps Integrated within Microfluidic Devices\",\"authors\":\"Jacob L. Binsley, E. L. Martin, Thomas O Myers, S. Pagliara, F. Ogrin\",\"doi\":\"10.3390/MICROMACHINES2021-09590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many lab-on-a-chip devices require a connection to an external pumping system in order to perform their function. While this is not problematic in typical laboratory environments, it is not always practical when applied to point-of-care testing, which is best utilised outside of the laboratory. Therefore, there has been a large amount of ongoing research into producing integrated microfluidic components capable of generating effective fluid flow from on-board the device. This research aims to introduce a system which can produce practical flow rates, and be easily fabricated and actuated using readily available techniques and materials. We show how an asymmetric elasto-magnetic system, inspired by Purcell’s 3-link swimmer can provide this solution through the generation of non-reciprocal motion in an enclosed environment. The device is fabricated monolithically within a microfluidic channel at the time of manufacture, and is actuated using a weak, oscillating magnetic field. The flow rate can be altered dynamically, and the resultant flow direction can be reversed by adjusting the frequency of the driving field. The device is proven, experimentally and numerically, to operate effectively when applied to fluids with a range of viscosities. Such a device may be able to replace external pumping systems in more portable applications.\",\"PeriodicalId\":137788,\"journal\":{\"name\":\"Proceedings of Micromachines 2021 — 1st International Conference on Micromachines and Applications (ICMA2021)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Micromachines 2021 — 1st International Conference on Micromachines and Applications (ICMA2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/MICROMACHINES2021-09590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Micromachines 2021 — 1st International Conference on Micromachines and Applications (ICMA2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/MICROMACHINES2021-09590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多芯片实验室设备需要连接到外部泵送系统才能执行其功能。虽然这在典型的实验室环境中没有问题,但当应用于护理点检测时,它并不总是实用的,它最好在实验室之外使用。因此,人们正在进行大量的研究,以生产能够从机载设备产生有效流体流动的集成微流体组件。本研究旨在介绍一种可以产生实际流量的系统,并且可以使用现成的技术和材料轻松制造和驱动。我们展示了受Purcell的3链游泳器启发的不对称弹磁系统如何通过在封闭环境中产生非互反运动来提供这种解决方案。该装置在制造时在微流体通道内单片制造,并使用弱振荡磁场驱动。通过调节驱动场的频率,可以动态地改变流量,并改变最终的流动方向。实验和数值证明,该装置在应用于粘度范围内的流体时有效运行。这种装置可以在更便携的应用中取代外部泵系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Elasto-Magnetic Pumps Integrated within Microfluidic Devices
Many lab-on-a-chip devices require a connection to an external pumping system in order to perform their function. While this is not problematic in typical laboratory environments, it is not always practical when applied to point-of-care testing, which is best utilised outside of the laboratory. Therefore, there has been a large amount of ongoing research into producing integrated microfluidic components capable of generating effective fluid flow from on-board the device. This research aims to introduce a system which can produce practical flow rates, and be easily fabricated and actuated using readily available techniques and materials. We show how an asymmetric elasto-magnetic system, inspired by Purcell’s 3-link swimmer can provide this solution through the generation of non-reciprocal motion in an enclosed environment. The device is fabricated monolithically within a microfluidic channel at the time of manufacture, and is actuated using a weak, oscillating magnetic field. The flow rate can be altered dynamically, and the resultant flow direction can be reversed by adjusting the frequency of the driving field. The device is proven, experimentally and numerically, to operate effectively when applied to fluids with a range of viscosities. Such a device may be able to replace external pumping systems in more portable applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nanoscopic Biosensors in Microfluidics Magneto-Catalytic Janus Micromotors for Selective Inactivation of Bacteria Biofilms Rapid lipid content screening in Neochloris Oleoabundans by carbon-based dielectrophoresis Lab-on-chip platform for on-field analysis of Grapevine leafroll-associated virus 3 Magnetically actuated glaucoma drainage device with adjustable flow properties after implantation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1