储能和超级电网整合

M. West, Thomas Baldwin
{"title":"储能和超级电网整合","authors":"M. West, Thomas Baldwin","doi":"10.1109/NAPS.2013.6666892","DOIUrl":null,"url":null,"abstract":"Load following of thermal power plants becomes exceedingly difficult as dependence upon variable power generation increases. Energy storage systems (ESS) can manipulate this unpredictable generation and provide controllable power from an otherwise uncontrollable source. Modeling the interaction between these technologies and the utility grid is fundamental for understanding performance and optimizing functionality. MATLAB is used to simulate these ESS behaviors. Historic data of generation and demand taken from ISO New England and IESO Ontario is used. The model treats the ESS as a series of equations to manipulate data and demonstrate ideal ESS behaviors over given daily, monthly, and seasonal time periods. ESS placed on the generation side of the transmission system is used to stabilize variable power production and maximizing the use of transmission line capacities. ESS on the load side of the utility system is used to match demand. Results show that, using this technology, dependence upon variable generation can be increased while maintaining power balance. Effective selection of ESS size can result in greater dependence upon clean energy, reduce transmission system capacity, and decrease power production costs.","PeriodicalId":421943,"journal":{"name":"2013 North American Power Symposium (NAPS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Energy storage and supergrid integration\",\"authors\":\"M. West, Thomas Baldwin\",\"doi\":\"10.1109/NAPS.2013.6666892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Load following of thermal power plants becomes exceedingly difficult as dependence upon variable power generation increases. Energy storage systems (ESS) can manipulate this unpredictable generation and provide controllable power from an otherwise uncontrollable source. Modeling the interaction between these technologies and the utility grid is fundamental for understanding performance and optimizing functionality. MATLAB is used to simulate these ESS behaviors. Historic data of generation and demand taken from ISO New England and IESO Ontario is used. The model treats the ESS as a series of equations to manipulate data and demonstrate ideal ESS behaviors over given daily, monthly, and seasonal time periods. ESS placed on the generation side of the transmission system is used to stabilize variable power production and maximizing the use of transmission line capacities. ESS on the load side of the utility system is used to match demand. Results show that, using this technology, dependence upon variable generation can be increased while maintaining power balance. Effective selection of ESS size can result in greater dependence upon clean energy, reduce transmission system capacity, and decrease power production costs.\",\"PeriodicalId\":421943,\"journal\":{\"name\":\"2013 North American Power Symposium (NAPS)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 North American Power Symposium (NAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAPS.2013.6666892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS.2013.6666892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着对可变发电依赖程度的提高,火电厂负荷跟踪变得异常困难。储能系统(ESS)可以控制这种不可预测的发电,并从其他不可控的来源提供可控的电力。对这些技术和公用事业网格之间的交互进行建模是理解性能和优化功能的基础。利用MATLAB对这些ESS行为进行了仿真。发电量和需求的历史数据取自ISO新英格兰和IESO安大略省。该模型将ESS作为一系列方程来处理数据,并在给定的日、月和季节时间段内展示理想的ESS行为。ESS放置在输电系统的发电侧,用于稳定可变电力生产和最大限度地利用输电线路容量。电力系统负荷侧的ESS用于匹配需求。结果表明,使用该技术可以在保持功率平衡的同时增加对变量发电的依赖。有效选择ESS的尺寸可以增加对清洁能源的依赖,减少输电系统容量,降低电力生产成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy storage and supergrid integration
Load following of thermal power plants becomes exceedingly difficult as dependence upon variable power generation increases. Energy storage systems (ESS) can manipulate this unpredictable generation and provide controllable power from an otherwise uncontrollable source. Modeling the interaction between these technologies and the utility grid is fundamental for understanding performance and optimizing functionality. MATLAB is used to simulate these ESS behaviors. Historic data of generation and demand taken from ISO New England and IESO Ontario is used. The model treats the ESS as a series of equations to manipulate data and demonstrate ideal ESS behaviors over given daily, monthly, and seasonal time periods. ESS placed on the generation side of the transmission system is used to stabilize variable power production and maximizing the use of transmission line capacities. ESS on the load side of the utility system is used to match demand. Results show that, using this technology, dependence upon variable generation can be increased while maintaining power balance. Effective selection of ESS size can result in greater dependence upon clean energy, reduce transmission system capacity, and decrease power production costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online estimation of power system distribution factors — A sparse representation approach Visualization of interarea oscillations using an extended subspace identification technique Wind power impact on power system frequency response Cost/benefit analysis for circuit breaker maintenance planning and scheduling Probabilistic modeling and reliability analysis for validating geomagnetically induced current data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1