基于信息融合的机器人同步定位与地图绘制,适应搜救混乱环境

Hongling Wang, Cheng-jin Zhang, Yong Song, Bao Pang
{"title":"基于信息融合的机器人同步定位与地图绘制,适应搜救混乱环境","authors":"Hongling Wang, Cheng-jin Zhang, Yong Song, Bao Pang","doi":"10.1109/ICAR.2017.8023658","DOIUrl":null,"url":null,"abstract":"The information-fusion methods are developed in this paper for mobile robots performing simultaneous localization and mapping (SLAM) adapting search and rescue (SAR) environment. Fusion systems consist of laser range finder (LRF) sensors, localization sonars, gyro odometry, Kinect-sensor, RGB-D camera, and other proprioceptive sensors. The integrated particle filter algorithms run through the proposed informationfusion systems to perform SLAM task in collapsed disaster scenarios. We discussed several fusion approaches which include parallel measurements filtering, exploration trajectories fusing, and combination sensors' measurements and mobile robots' trajectories. The different fusion errors are analyzed by comparing the estimated trajectories and fusion trajectory to true trajectories, respectively. The simulations and experiments validate the effectiveness of the proposed information-fusion methods in improving SLAM performances adapting to SAR scenarios.","PeriodicalId":198633,"journal":{"name":"2017 18th International Conference on Advanced Robotics (ICAR)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Information-fusion based robot simultaneous localization and mapping adapted to search and rescue cluttered environment\",\"authors\":\"Hongling Wang, Cheng-jin Zhang, Yong Song, Bao Pang\",\"doi\":\"10.1109/ICAR.2017.8023658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The information-fusion methods are developed in this paper for mobile robots performing simultaneous localization and mapping (SLAM) adapting search and rescue (SAR) environment. Fusion systems consist of laser range finder (LRF) sensors, localization sonars, gyro odometry, Kinect-sensor, RGB-D camera, and other proprioceptive sensors. The integrated particle filter algorithms run through the proposed informationfusion systems to perform SLAM task in collapsed disaster scenarios. We discussed several fusion approaches which include parallel measurements filtering, exploration trajectories fusing, and combination sensors' measurements and mobile robots' trajectories. The different fusion errors are analyzed by comparing the estimated trajectories and fusion trajectory to true trajectories, respectively. The simulations and experiments validate the effectiveness of the proposed information-fusion methods in improving SLAM performances adapting to SAR scenarios.\",\"PeriodicalId\":198633,\"journal\":{\"name\":\"2017 18th International Conference on Advanced Robotics (ICAR)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 18th International Conference on Advanced Robotics (ICAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAR.2017.8023658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2017.8023658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

针对移动机器人在搜救环境下进行同步定位与测绘的问题,提出了一种信息融合方法。融合系统由激光测距(LRF)传感器、定位声纳、陀螺仪测量、kinect传感器、RGB-D相机和其他本体感觉传感器组成。综合粒子滤波算法贯穿于所提出的信息融合系统中,以完成崩塌灾害场景下的SLAM任务。我们讨论了几种融合方法,包括平行测量滤波、探索轨迹融合以及传感器测量和移动机器人轨迹的结合。通过对估计轨迹和融合轨迹与真实轨迹的比较,分析了不同的融合误差。仿真和实验验证了所提出的信息融合方法在提高SLAM适应SAR场景性能方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Information-fusion based robot simultaneous localization and mapping adapted to search and rescue cluttered environment
The information-fusion methods are developed in this paper for mobile robots performing simultaneous localization and mapping (SLAM) adapting search and rescue (SAR) environment. Fusion systems consist of laser range finder (LRF) sensors, localization sonars, gyro odometry, Kinect-sensor, RGB-D camera, and other proprioceptive sensors. The integrated particle filter algorithms run through the proposed informationfusion systems to perform SLAM task in collapsed disaster scenarios. We discussed several fusion approaches which include parallel measurements filtering, exploration trajectories fusing, and combination sensors' measurements and mobile robots' trajectories. The different fusion errors are analyzed by comparing the estimated trajectories and fusion trajectory to true trajectories, respectively. The simulations and experiments validate the effectiveness of the proposed information-fusion methods in improving SLAM performances adapting to SAR scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Questionnaire experiment using networked service robots Model selection for incremental learning of generalizable movement primitives Safety evaluation method of robot arm considering energy of contact Robotman: A security robot for human-robot interaction Physical edge detection in clothing items for robotic manipulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1