室温下PbSe薄膜结构的中红外光致发光

Z. Dashevsky, V. Kasiyan, G. Radovsky, E. Shufer, M. Auslender
{"title":"室温下PbSe薄膜结构的中红外光致发光","authors":"Z. Dashevsky, V. Kasiyan, G. Radovsky, E. Shufer, M. Auslender","doi":"10.1117/12.815199","DOIUrl":null,"url":null,"abstract":"Lead salt materials are of high interest for midinfrared optical emitters and detectors for molecular spectroscopy. The IV-VI narrow gap semiconductors have a multivalley band structure with band extrema at the L point of the Brillioun zone. Due to the favorable mirrorlike band structure, the nonradiative Auger recombination is reduced by one or two orders of magnitude below that of narrow gap III-V and II-VI semiconductor compounds1. The photoluminescence in the midinfrared range for PbSe film structures, excited by a semiconductor laser diode, is investigated. The PbSe films were prepared by Physical Vapor Deposition (PVD) using an electron gun. A PbSe crystal doped with 0.1 at% Bi was used as a source for the fabrication of thin layers. Starting from the assumption that the rate of nucleation is a predominate factor in determining grain size, thin films were fabricated on substrates that had been maintained at various temperatures of deposition process2. Amorphous glass and Kapton polyimide film was used as substrate. The growth rate was 0.2 nm/s. Films were thermally treated at high oxygen pressure in a heated encapsulated system. Microstructure has been studied using XRD, AFM and HRSEM. For PbSe structures photoluminescence at temperature as high as 300 K is demonstrated.","PeriodicalId":273853,"journal":{"name":"International Conference on Advanced Optical Materials and Devices","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Mid-infrared photoluminescence of PbSe film structures up to room temperature\",\"authors\":\"Z. Dashevsky, V. Kasiyan, G. Radovsky, E. Shufer, M. Auslender\",\"doi\":\"10.1117/12.815199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lead salt materials are of high interest for midinfrared optical emitters and detectors for molecular spectroscopy. The IV-VI narrow gap semiconductors have a multivalley band structure with band extrema at the L point of the Brillioun zone. Due to the favorable mirrorlike band structure, the nonradiative Auger recombination is reduced by one or two orders of magnitude below that of narrow gap III-V and II-VI semiconductor compounds1. The photoluminescence in the midinfrared range for PbSe film structures, excited by a semiconductor laser diode, is investigated. The PbSe films were prepared by Physical Vapor Deposition (PVD) using an electron gun. A PbSe crystal doped with 0.1 at% Bi was used as a source for the fabrication of thin layers. Starting from the assumption that the rate of nucleation is a predominate factor in determining grain size, thin films were fabricated on substrates that had been maintained at various temperatures of deposition process2. Amorphous glass and Kapton polyimide film was used as substrate. The growth rate was 0.2 nm/s. Films were thermally treated at high oxygen pressure in a heated encapsulated system. Microstructure has been studied using XRD, AFM and HRSEM. For PbSe structures photoluminescence at temperature as high as 300 K is demonstrated.\",\"PeriodicalId\":273853,\"journal\":{\"name\":\"International Conference on Advanced Optical Materials and Devices\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Advanced Optical Materials and Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.815199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Advanced Optical Materials and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.815199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

铅盐材料是中红外发射体和分子光谱探测器的重要材料。IV-VI窄隙半导体具有多谷能带结构,在亮带的L点处有能带极值。由于有利的镜面带结构,非辐射俄歇复合比窄间隙III-V和II-VI半导体化合物低一到两个数量级1。研究了在半导体激光二极管的激励下,PbSe薄膜结构在中红外范围内的光致发光。采用电子枪物理气相沉积(PVD)法制备PbSe薄膜。用掺有0.1 at% Bi的PbSe晶体作为制备薄层的源。假设成核速率是决定晶粒尺寸的主要因素,在沉积过程中保持不同温度的基底上制备薄膜2。采用非晶玻璃和卡普顿聚酰亚胺薄膜作为衬底。生长速率为0.2 nm/s。薄膜在加热封装系统中在高氧压力下进行热处理。采用XRD、AFM和HRSEM对其微观结构进行了研究。对于PbSe结构,可以在高达300 K的温度下实现光致发光。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mid-infrared photoluminescence of PbSe film structures up to room temperature
Lead salt materials are of high interest for midinfrared optical emitters and detectors for molecular spectroscopy. The IV-VI narrow gap semiconductors have a multivalley band structure with band extrema at the L point of the Brillioun zone. Due to the favorable mirrorlike band structure, the nonradiative Auger recombination is reduced by one or two orders of magnitude below that of narrow gap III-V and II-VI semiconductor compounds1. The photoluminescence in the midinfrared range for PbSe film structures, excited by a semiconductor laser diode, is investigated. The PbSe films were prepared by Physical Vapor Deposition (PVD) using an electron gun. A PbSe crystal doped with 0.1 at% Bi was used as a source for the fabrication of thin layers. Starting from the assumption that the rate of nucleation is a predominate factor in determining grain size, thin films were fabricated on substrates that had been maintained at various temperatures of deposition process2. Amorphous glass and Kapton polyimide film was used as substrate. The growth rate was 0.2 nm/s. Films were thermally treated at high oxygen pressure in a heated encapsulated system. Microstructure has been studied using XRD, AFM and HRSEM. For PbSe structures photoluminescence at temperature as high as 300 K is demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
TiO2-PHT interface influence to charge carrier photo generation and recombination Electronic eye occluder with time-counting and reflection control Formation of deep acceptor centers in AlGaN alloys Characterizing semiconductor materials with terahertz radiation pulses Photoinduced AsSeS thin film phase plates as adaptive optics mirrors for eye aberration correction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1