电动汽车充电站干扰攻击者的功率分配:一种博弈论方法

Zhesheng Zhang, Wei Yuan, Fanyu You
{"title":"电动汽车充电站干扰攻击者的功率分配:一种博弈论方法","authors":"Zhesheng Zhang, Wei Yuan, Fanyu You","doi":"10.1109/SOCPAR.2015.7492792","DOIUrl":null,"url":null,"abstract":"This paper considers a system consisting of multiple attackers, lots of charging stations and plug-in electric vehicles (PEVs). The attackers conduct channel jamming attacks and benefit from snatching customers (i.e., PEVs) from the victim charging stations. Suppose that the attackers are selfish and they attempt to maximize their own average net revenue per unit time. We aim to investigate the problem of how to appropriately choose its transmit power to conduct the jamming attack for every attacker. We formulate this problem as a noncooperative game, and show the existence of its solution, i.e., a Nash equilibrium (NE). Due to the existence of some coupling constraints, the game is a Generalized Nash equilibrium problem (GNEP), which is usually hard to solve. To overcome this challenge, here we introduce a variation inequality (VI) approach. More specifically, we treat the game as a VI problem, and prove the existence of its solution. We develop an iterative algorithm to compute the solution to the VI problem, which corresponds to an NE of our game. Numerical results demonstrate the effectiveness and the efficiency of our proposed algorithm.","PeriodicalId":409493,"journal":{"name":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Power allocation of jamming attackers against PEV charging stations: A game theoretical approach\",\"authors\":\"Zhesheng Zhang, Wei Yuan, Fanyu You\",\"doi\":\"10.1109/SOCPAR.2015.7492792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers a system consisting of multiple attackers, lots of charging stations and plug-in electric vehicles (PEVs). The attackers conduct channel jamming attacks and benefit from snatching customers (i.e., PEVs) from the victim charging stations. Suppose that the attackers are selfish and they attempt to maximize their own average net revenue per unit time. We aim to investigate the problem of how to appropriately choose its transmit power to conduct the jamming attack for every attacker. We formulate this problem as a noncooperative game, and show the existence of its solution, i.e., a Nash equilibrium (NE). Due to the existence of some coupling constraints, the game is a Generalized Nash equilibrium problem (GNEP), which is usually hard to solve. To overcome this challenge, here we introduce a variation inequality (VI) approach. More specifically, we treat the game as a VI problem, and prove the existence of its solution. We develop an iterative algorithm to compute the solution to the VI problem, which corresponds to an NE of our game. Numerical results demonstrate the effectiveness and the efficiency of our proposed algorithm.\",\"PeriodicalId\":409493,\"journal\":{\"name\":\"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCPAR.2015.7492792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCPAR.2015.7492792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了一个由多个攻击者、多个充电站和插电式电动汽车组成的系统。攻击者进行信道干扰攻击,并从受害者充电站抢走客户(即pev)中获利。假设攻击者是自私的,他们试图最大化自己每单位时间的平均净收入。我们的目的是研究如何合理地选择其发射功率来对每个攻击者进行干扰攻击。我们将此问题表述为一个非合作博弈,并证明了其解的存在性,即纳什均衡(NE)。由于某些耦合约束的存在,该博弈是一个一般难以求解的广义纳什均衡问题(GNEP)。为了克服这一挑战,我们在这里引入了一种变差不等式(VI)方法。更具体地说,我们将游戏视为一个VI问题,并证明其解的存在性。我们开发了一个迭代算法来计算VI问题的解,这对应于我们游戏的NE。数值结果验证了该算法的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Power allocation of jamming attackers against PEV charging stations: A game theoretical approach
This paper considers a system consisting of multiple attackers, lots of charging stations and plug-in electric vehicles (PEVs). The attackers conduct channel jamming attacks and benefit from snatching customers (i.e., PEVs) from the victim charging stations. Suppose that the attackers are selfish and they attempt to maximize their own average net revenue per unit time. We aim to investigate the problem of how to appropriately choose its transmit power to conduct the jamming attack for every attacker. We formulate this problem as a noncooperative game, and show the existence of its solution, i.e., a Nash equilibrium (NE). Due to the existence of some coupling constraints, the game is a Generalized Nash equilibrium problem (GNEP), which is usually hard to solve. To overcome this challenge, here we introduce a variation inequality (VI) approach. More specifically, we treat the game as a VI problem, and prove the existence of its solution. We develop an iterative algorithm to compute the solution to the VI problem, which corresponds to an NE of our game. Numerical results demonstrate the effectiveness and the efficiency of our proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An effective AIS-based model for frequency assignment in mobile communication An innovative approach for feature selection based on chicken swarm optimization Vertical collaborative clustering using generative topographic maps Solving the obstacle neutralization problem using swarm intelligence algorithms Optimal partial filters of EEG signals for shared control of vehicle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1