OptEx:一个面向Spark的截止日期感知成本优化模型

Subhajit Sidhanta, W. Golab, S. Mukhopadhyay
{"title":"OptEx:一个面向Spark的截止日期感知成本优化模型","authors":"Subhajit Sidhanta, W. Golab, S. Mukhopadhyay","doi":"10.1109/CCGrid.2016.10","DOIUrl":null,"url":null,"abstract":"We present OptEx, a closed-form model of job execution on Apache Spark, a popular parallel processing engine. To the best of our knowledge, OptEx is the first work that analytically models job completion time on Spark. The model can be used to estimate the completion time of a given Spark job on a cloud, with respect to the size of the input dataset, the number of iterations, the number of nodes comprising the underlying cluster. Experimental results demonstrate that OptEx yields a mean relative error of 6% in estimating the job completion time. Furthermore, the model can be applied for estimating the cost optimal cluster composition for running a given Spark job on a cloud under a completion deadline specified in the SLO (i.e.,Service Level Objective). We show experimentally that OptEx is able to correctly estimate the cost optimal cluster composition for running a given Spark job under an SLO deadline with an accuracy of 98%.","PeriodicalId":103641,"journal":{"name":"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"OptEx: A Deadline-Aware Cost Optimization Model for Spark\",\"authors\":\"Subhajit Sidhanta, W. Golab, S. Mukhopadhyay\",\"doi\":\"10.1109/CCGrid.2016.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present OptEx, a closed-form model of job execution on Apache Spark, a popular parallel processing engine. To the best of our knowledge, OptEx is the first work that analytically models job completion time on Spark. The model can be used to estimate the completion time of a given Spark job on a cloud, with respect to the size of the input dataset, the number of iterations, the number of nodes comprising the underlying cluster. Experimental results demonstrate that OptEx yields a mean relative error of 6% in estimating the job completion time. Furthermore, the model can be applied for estimating the cost optimal cluster composition for running a given Spark job on a cloud under a completion deadline specified in the SLO (i.e.,Service Level Objective). We show experimentally that OptEx is able to correctly estimate the cost optimal cluster composition for running a given Spark job under an SLO deadline with an accuracy of 98%.\",\"PeriodicalId\":103641,\"journal\":{\"name\":\"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGrid.2016.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid.2016.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

我们提出了OptEx,一个在Apache Spark(一种流行的并行处理引擎)上的作业执行的封闭形式模型。据我们所知,OptEx是第一个在Spark上分析建模作业完成时间的工作。该模型可用于估计云上给定Spark作业的完成时间,涉及输入数据集的大小、迭代次数、组成底层集群的节点数量。实验结果表明,OptEx估计作业完成时间的平均相对误差为6%。此外,该模型还可以用于估计在SLO中指定的完成期限(即服务水平目标)下在云上运行给定Spark作业的成本最优集群组成。我们通过实验证明,OptEx能够正确估计在SLO截止日期下运行给定Spark作业的成本最优集群组成,准确率为98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OptEx: A Deadline-Aware Cost Optimization Model for Spark
We present OptEx, a closed-form model of job execution on Apache Spark, a popular parallel processing engine. To the best of our knowledge, OptEx is the first work that analytically models job completion time on Spark. The model can be used to estimate the completion time of a given Spark job on a cloud, with respect to the size of the input dataset, the number of iterations, the number of nodes comprising the underlying cluster. Experimental results demonstrate that OptEx yields a mean relative error of 6% in estimating the job completion time. Furthermore, the model can be applied for estimating the cost optimal cluster composition for running a given Spark job on a cloud under a completion deadline specified in the SLO (i.e.,Service Level Objective). We show experimentally that OptEx is able to correctly estimate the cost optimal cluster composition for running a given Spark job under an SLO deadline with an accuracy of 98%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Increasing the Performance of Data Centers by Combining Remote GPU Virtualization with Slurm DiBA: Distributed Power Budget Allocation for Large-Scale Computing Clusters Spatial Support Vector Regression to Detect Silent Errors in the Exascale Era DTStorage: Dynamic Tape-Based Storage for Cost-Effective and Highly-Available Streaming Service Facilitating the Execution of HPC Workloads in Colombia through the Integration of a Private IaaS and a Scientific PaaS/SaaS Marketplace
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1