高噪声水平下瞬态的鲁棒相位差估计

Oskar Keding, Maria Sandsten
{"title":"高噪声水平下瞬态的鲁棒相位差估计","authors":"Oskar Keding, Maria Sandsten","doi":"10.23919/eusipco55093.2022.9909970","DOIUrl":null,"url":null,"abstract":"This paper presents the Reassignment Vector Phase Difference Estimator (RVPDE), which gives noise robust relative phase estimates of oscillating transient signals in high noise levels. Estimation of relative phase information between signals is of interest for direction of arrival estimation, source separation and spatio-temporal decoding in neurology as well as for soundscape analysis. The RVPDE relies on the spectrogram reassignment vectors which contains information of the time-frequency local phase difference between two transient signals. The final estimate, which is robust to high noise levels, is given as the median over the local time-frequency area. The proposed technique is shown to outperform state-of-the-art methods in simulations for high noise levels. A discussion on the statistical distribution of the estimates is also presented, and finally an example of phase difference estimation of visually evoked potentials measured from electrical brain signals is shown.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust Phase Difference Estimation of Transients in High Noise Levels\",\"authors\":\"Oskar Keding, Maria Sandsten\",\"doi\":\"10.23919/eusipco55093.2022.9909970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the Reassignment Vector Phase Difference Estimator (RVPDE), which gives noise robust relative phase estimates of oscillating transient signals in high noise levels. Estimation of relative phase information between signals is of interest for direction of arrival estimation, source separation and spatio-temporal decoding in neurology as well as for soundscape analysis. The RVPDE relies on the spectrogram reassignment vectors which contains information of the time-frequency local phase difference between two transient signals. The final estimate, which is robust to high noise levels, is given as the median over the local time-frequency area. The proposed technique is shown to outperform state-of-the-art methods in simulations for high noise levels. A discussion on the statistical distribution of the estimates is also presented, and finally an example of phase difference estimation of visually evoked potentials measured from electrical brain signals is shown.\",\"PeriodicalId\":231263,\"journal\":{\"name\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/eusipco55093.2022.9909970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了重分配矢量相位差估计器(RVPDE),它能对高噪声水平下的振荡暂态信号进行噪声鲁棒相对相位估计。信号间相对相位信息的估计对神经学中的到达方向估计、源分离和时空解码以及声景分析都有重要意义。RVPDE依赖于谱图重分配矢量,谱图重分配矢量包含两个瞬态信号的时频局部相位差信息。最后的估计是对高噪声水平的鲁棒性,作为局部时频区域的中值。所提出的技术被证明在高噪声水平的模拟中优于最先进的方法。讨论了估计的统计分布,最后给出了一个脑电信号视觉诱发电位相位差估计的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust Phase Difference Estimation of Transients in High Noise Levels
This paper presents the Reassignment Vector Phase Difference Estimator (RVPDE), which gives noise robust relative phase estimates of oscillating transient signals in high noise levels. Estimation of relative phase information between signals is of interest for direction of arrival estimation, source separation and spatio-temporal decoding in neurology as well as for soundscape analysis. The RVPDE relies on the spectrogram reassignment vectors which contains information of the time-frequency local phase difference between two transient signals. The final estimate, which is robust to high noise levels, is given as the median over the local time-frequency area. The proposed technique is shown to outperform state-of-the-art methods in simulations for high noise levels. A discussion on the statistical distribution of the estimates is also presented, and finally an example of phase difference estimation of visually evoked potentials measured from electrical brain signals is shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing Bias in Face Image Quality Assessment Electrically evoked auditory steady state response detection in cochlear implant recipients using a system identification approach Uncovering cortical layers with multi-exponential analysis: a region of interest study Phaseless Passive Synthetic Aperture Imaging with Regularized Wirtinger Flow The faster proximal algorithm, the better unfolded deep learning architecture ? The study case of image denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1