绘制地理参考图形-结合图形绘制和地理数据

G. D. Lozzo, M. D. Bartolomeo, M. Patrignani, G. Battista, D. Cannone, Sergio Tortora
{"title":"绘制地理参考图形-结合图形绘制和地理数据","authors":"G. D. Lozzo, M. D. Bartolomeo, M. Patrignani, G. Battista, D. Cannone, Sergio Tortora","doi":"10.5220/0005266601090116","DOIUrl":null,"url":null,"abstract":"We consider the task of visually exploring relationships (such as established connections, similarity, reachability, etc) among a set of georeferenced entities, i.e., entities that have geographic data associated with them. A novel 2.5D paradigm is proposed that provides a robust and practical solution based on separating and then integrating back again the networked and geographical dimensions of the input dataset. This allows us to easily cope with partial or incomplete geographic annotations, to reduce cluttering of close entities, and to address focus-plus-context visualization issues. Typical application domains include, for example, coordinating search and rescue teams or medical evacuation squads, monitoring ad-hoc networks, exploring location-based social networks and, more in general, visualizing relational datasets including geographic annotations.","PeriodicalId":326087,"journal":{"name":"International Conference on Information Visualization Theory and Applications","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Drawing Georeferenced Graphs - Combining Graph Drawing and Geographic Data\",\"authors\":\"G. D. Lozzo, M. D. Bartolomeo, M. Patrignani, G. Battista, D. Cannone, Sergio Tortora\",\"doi\":\"10.5220/0005266601090116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the task of visually exploring relationships (such as established connections, similarity, reachability, etc) among a set of georeferenced entities, i.e., entities that have geographic data associated with them. A novel 2.5D paradigm is proposed that provides a robust and practical solution based on separating and then integrating back again the networked and geographical dimensions of the input dataset. This allows us to easily cope with partial or incomplete geographic annotations, to reduce cluttering of close entities, and to address focus-plus-context visualization issues. Typical application domains include, for example, coordinating search and rescue teams or medical evacuation squads, monitoring ad-hoc networks, exploring location-based social networks and, more in general, visualizing relational datasets including geographic annotations.\",\"PeriodicalId\":326087,\"journal\":{\"name\":\"International Conference on Information Visualization Theory and Applications\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Information Visualization Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0005266601090116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Information Visualization Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005266601090116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们考虑的任务是可视化地探索一组地理引用实体之间的关系(如建立的连接、相似性、可达性等),即具有地理数据关联的实体。提出了一种新颖的2.5D范式,它提供了一种基于分离然后再整合输入数据集的网络和地理维度的鲁棒和实用的解决方案。这使我们可以轻松地处理部分或不完整的地理注释,减少紧密实体的混乱,并解决焦点加上下文可视化问题。典型的应用领域包括,例如,协调搜索和救援队或医疗后送队,监测特别网络,探索基于位置的社交网络,以及更一般地,可视化包括地理注释在内的关系数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Drawing Georeferenced Graphs - Combining Graph Drawing and Geographic Data
We consider the task of visually exploring relationships (such as established connections, similarity, reachability, etc) among a set of georeferenced entities, i.e., entities that have geographic data associated with them. A novel 2.5D paradigm is proposed that provides a robust and practical solution based on separating and then integrating back again the networked and geographical dimensions of the input dataset. This allows us to easily cope with partial or incomplete geographic annotations, to reduce cluttering of close entities, and to address focus-plus-context visualization issues. Typical application domains include, for example, coordinating search and rescue teams or medical evacuation squads, monitoring ad-hoc networks, exploring location-based social networks and, more in general, visualizing relational datasets including geographic annotations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Linear Time Algorithm for Visualizing Knotted Structures in 3 Pages Information Visualization for CSV Open Data Files Structure Analysis VISUAL ANALYTICS OF MULTIMODAL BIOLOGICAL DATA Arc and Swarm-based Representations of Customer's Flows among Supermarkets Effect of Displaying Uncertainty in Line and Bar Charts - Presentation and Interpretation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1