高密度电源模块设计自动化的分层布局综合与优化框架

Imam Al Razi, Quang Le, H. Mantooth, Yarui Peng
{"title":"高密度电源模块设计自动化的分层布局综合与优化框架","authors":"Imam Al Razi, Quang Le, H. Mantooth, Yarui Peng","doi":"10.1109/ICCAD51958.2021.9643545","DOIUrl":null,"url":null,"abstract":"Multi-chip power module (MCPM) layout design automation has become an emerging research field in the power electronics society. MCPM physical design is currently a trial-and-error procedure that heavily relies on the designers' experience to produce a reliable solution. To push the boundary of energy efficiency and power density, novel packaging technologies are emerging with increasing design complexity. As this manual design process becomes the bottleneck in design productivity, the power electronics industry is calling for more intelligence in design CAD tools, especially for advanced packaging solutions with stacked substrates. This paper presents a physical design, synthesis, and optimization framework for 2D, 2.5D, and 3D power modules. Generic, scalable, and efficient physical design algorithms are implemented with optimization metaheuristics to solve the hierarchical layout synthesis problem. Corner stitching data structure and hierarchical constraint graph evaluation have been customized to better align with power electronics design considerations. A complete layout synthesis process is demonstrated for both 2D and 3D power module examples. Further, electro-thermal design optimization is carried out on a sample 3D MCPM layout using both exhaustive and evolutionary search methods. Our algorithm can generate 937 3D layouts in 56 s, resulting in 10 layouts on the Pareto-front. In addition, our optimized 3D layouts can achieve 1.3 nH loop inductance with 38 °C temperature rise and 836 mm2 footprint area, compared to 2D layouts with 8.5 nH, 99 °C, and 2000 mm2.","PeriodicalId":370791,"journal":{"name":"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hierarchical Layout Synthesis and Optimization Framework for High-Density Power Module Design Automation\",\"authors\":\"Imam Al Razi, Quang Le, H. Mantooth, Yarui Peng\",\"doi\":\"10.1109/ICCAD51958.2021.9643545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-chip power module (MCPM) layout design automation has become an emerging research field in the power electronics society. MCPM physical design is currently a trial-and-error procedure that heavily relies on the designers' experience to produce a reliable solution. To push the boundary of energy efficiency and power density, novel packaging technologies are emerging with increasing design complexity. As this manual design process becomes the bottleneck in design productivity, the power electronics industry is calling for more intelligence in design CAD tools, especially for advanced packaging solutions with stacked substrates. This paper presents a physical design, synthesis, and optimization framework for 2D, 2.5D, and 3D power modules. Generic, scalable, and efficient physical design algorithms are implemented with optimization metaheuristics to solve the hierarchical layout synthesis problem. Corner stitching data structure and hierarchical constraint graph evaluation have been customized to better align with power electronics design considerations. A complete layout synthesis process is demonstrated for both 2D and 3D power module examples. Further, electro-thermal design optimization is carried out on a sample 3D MCPM layout using both exhaustive and evolutionary search methods. Our algorithm can generate 937 3D layouts in 56 s, resulting in 10 layouts on the Pareto-front. In addition, our optimized 3D layouts can achieve 1.3 nH loop inductance with 38 °C temperature rise and 836 mm2 footprint area, compared to 2D layouts with 8.5 nH, 99 °C, and 2000 mm2.\",\"PeriodicalId\":370791,\"journal\":{\"name\":\"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD51958.2021.9643545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD51958.2021.9643545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

多芯片功率模块(MCPM)版图设计自动化已成为电力电子领域一个新兴的研究领域。MCPM物理设计目前是一个反复试验的过程,严重依赖于设计师的经验来产生可靠的解决方案。为了推动能源效率和功率密度的边界,新的封装技术不断涌现,设计的复杂性也越来越高。由于这种手工设计过程成为设计生产力的瓶颈,电力电子行业要求设计CAD工具更加智能化,特别是对于具有堆叠基板的先进封装解决方案。本文介绍了2D、2.5D和3D电源模块的物理设计、合成和优化框架。采用优化元启发式实现通用、可扩展、高效的物理设计算法,解决分层布局综合问题。角拼接数据结构和分层约束图评估已经定制,以更好地与电力电子设计考虑相一致。以二维和三维电源模块为例,演示了完整的布局合成过程。在此基础上,利用穷举和进化搜索方法对三维MCPM布局进行了电热优化设计。我们的算法可以在56秒内生成937个3D布局,在Pareto-front上生成10个布局。此外,我们优化的3D布局可以在38°C温升和836 mm2占地面积下实现1.3 nH环路电感,而2D布局为8.5 nH, 99°C和2000 mm2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchical Layout Synthesis and Optimization Framework for High-Density Power Module Design Automation
Multi-chip power module (MCPM) layout design automation has become an emerging research field in the power electronics society. MCPM physical design is currently a trial-and-error procedure that heavily relies on the designers' experience to produce a reliable solution. To push the boundary of energy efficiency and power density, novel packaging technologies are emerging with increasing design complexity. As this manual design process becomes the bottleneck in design productivity, the power electronics industry is calling for more intelligence in design CAD tools, especially for advanced packaging solutions with stacked substrates. This paper presents a physical design, synthesis, and optimization framework for 2D, 2.5D, and 3D power modules. Generic, scalable, and efficient physical design algorithms are implemented with optimization metaheuristics to solve the hierarchical layout synthesis problem. Corner stitching data structure and hierarchical constraint graph evaluation have been customized to better align with power electronics design considerations. A complete layout synthesis process is demonstrated for both 2D and 3D power module examples. Further, electro-thermal design optimization is carried out on a sample 3D MCPM layout using both exhaustive and evolutionary search methods. Our algorithm can generate 937 3D layouts in 56 s, resulting in 10 layouts on the Pareto-front. In addition, our optimized 3D layouts can achieve 1.3 nH loop inductance with 38 °C temperature rise and 836 mm2 footprint area, compared to 2D layouts with 8.5 nH, 99 °C, and 2000 mm2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and Accurate PPA Modeling with Transfer Learning Mobileware: A High-Performance MobileNet Accelerator with Channel Stationary Dataflow A General Hardware and Software Co-Design Framework for Energy-Efficient Edge AI ToPro: A Topology Projector and Waveguide Router for Wavelength-Routed Optical Networks-on-Chip Early Validation of SoCs Security Architecture Against Timing Flows Using SystemC-based VPs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1