利用真实湍流剖面优化自适应光学层析重建参数

O. Farley, J. Osborn, R. Wilson, T. Fusco, B. Neichel, T. Morris, C. Correia
{"title":"利用真实湍流剖面优化自适应光学层析重建参数","authors":"O. Farley, J. Osborn, R. Wilson, T. Fusco, B. Neichel, T. Morris, C. Correia","doi":"10.1117/12.2561425","DOIUrl":null,"url":null,"abstract":"The performance of tomographic adaptive optics systems will depend on the vertical profile of turbulence in the atmosphere. Since the profile is changing over time, to maintain optimal correction the tomographic reconstructor must be continually updated with new profile information. Several reconstructor parameters must then be chosen to optimise performance given the constraints of real-time computing resources: the number of reconstructed layers, reoptimisation period and averaging time. We analyse the effect of changing these parameters by coupling fast Fourier-domain AO simulation with a large database of over 10,000 high resolution turbulence profiles measured by the Stereo-SCIDAR at Paranal.","PeriodicalId":231205,"journal":{"name":"Adaptive Optics Systems VII","volume":"os-16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimising tomographic reconstructor parameters for adaptive optics using real turbulence profiles\",\"authors\":\"O. Farley, J. Osborn, R. Wilson, T. Fusco, B. Neichel, T. Morris, C. Correia\",\"doi\":\"10.1117/12.2561425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of tomographic adaptive optics systems will depend on the vertical profile of turbulence in the atmosphere. Since the profile is changing over time, to maintain optimal correction the tomographic reconstructor must be continually updated with new profile information. Several reconstructor parameters must then be chosen to optimise performance given the constraints of real-time computing resources: the number of reconstructed layers, reoptimisation period and averaging time. We analyse the effect of changing these parameters by coupling fast Fourier-domain AO simulation with a large database of over 10,000 high resolution turbulence profiles measured by the Stereo-SCIDAR at Paranal.\",\"PeriodicalId\":231205,\"journal\":{\"name\":\"Adaptive Optics Systems VII\",\"volume\":\"os-16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adaptive Optics Systems VII\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2561425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adaptive Optics Systems VII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2561425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

层析自适应光学系统的性能取决于大气湍流的垂直剖面。由于剖面是随时间变化的,为了保持最佳的校正,层析重建器必须不断更新新的剖面信息。考虑到实时计算资源的限制,必须选择几个重构器参数来优化性能:重构层的数量、重新优化周期和平均时间。我们通过将快速傅里叶域AO模拟与帕拉纳尔Stereo-SCIDAR测量的10,000多个高分辨率湍流剖面的大型数据库相结合,分析了改变这些参数的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimising tomographic reconstructor parameters for adaptive optics using real turbulence profiles
The performance of tomographic adaptive optics systems will depend on the vertical profile of turbulence in the atmosphere. Since the profile is changing over time, to maintain optimal correction the tomographic reconstructor must be continually updated with new profile information. Several reconstructor parameters must then be chosen to optimise performance given the constraints of real-time computing resources: the number of reconstructed layers, reoptimisation period and averaging time. We analyse the effect of changing these parameters by coupling fast Fourier-domain AO simulation with a large database of over 10,000 high resolution turbulence profiles measured by the Stereo-SCIDAR at Paranal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Front Matter: Volume 11448 Infrared wavefront sensing for adaptive optics assisted galactic center observations with GRAVITY A test bed to compare the performance of different wavefront sensory ALIOLI: presentation and first steps Joint estimation of NCPA and exoplanetary image in stationary atmospheric turbulence using millisecond telemetry from the WFS and science camera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1