恶意软件行为图像,用于恶意软件变体识别

Syed Zainudeen Mohd Shaid, M. A. Maarof
{"title":"恶意软件行为图像,用于恶意软件变体识别","authors":"Syed Zainudeen Mohd Shaid, M. A. Maarof","doi":"10.1109/ISBAST.2014.7013128","DOIUrl":null,"url":null,"abstract":"Several methods have been devised by researchers to facilitate malware analysis and one of them is through malware visualization. Malware visualization is a field that focuses on representing malware features in a form of visual cues that could be used to convey more information about a particular malware. There has been works in malware visualization but unfortunately, there seems to be a lack of focus in visualizing malware behavior. In this paper, we highlight our findings in visualizing malware behavior and its potential benefit for malware classification. Our research shows that malware behavior visualization can be used as a way to identify malware variants with high accuracy.","PeriodicalId":292333,"journal":{"name":"2014 International Symposium on Biometrics and Security Technologies (ISBAST)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"Malware behavior image for malware variant identification\",\"authors\":\"Syed Zainudeen Mohd Shaid, M. A. Maarof\",\"doi\":\"10.1109/ISBAST.2014.7013128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several methods have been devised by researchers to facilitate malware analysis and one of them is through malware visualization. Malware visualization is a field that focuses on representing malware features in a form of visual cues that could be used to convey more information about a particular malware. There has been works in malware visualization but unfortunately, there seems to be a lack of focus in visualizing malware behavior. In this paper, we highlight our findings in visualizing malware behavior and its potential benefit for malware classification. Our research shows that malware behavior visualization can be used as a way to identify malware variants with high accuracy.\",\"PeriodicalId\":292333,\"journal\":{\"name\":\"2014 International Symposium on Biometrics and Security Technologies (ISBAST)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Symposium on Biometrics and Security Technologies (ISBAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBAST.2014.7013128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Symposium on Biometrics and Security Technologies (ISBAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBAST.2014.7013128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

研究人员设计了几种方法来促进恶意软件的分析,其中一种方法是通过恶意软件可视化。恶意软件可视化是一个专注于以视觉线索的形式表示恶意软件特征的领域,可以用来传达关于特定恶意软件的更多信息。在恶意软件可视化方面已经有了一些工作,但不幸的是,似乎缺乏对恶意软件行为可视化的关注。在本文中,我们重点介绍了我们在恶意软件行为可视化方面的发现及其对恶意软件分类的潜在好处。我们的研究表明,恶意软件行为可视化可以作为一种识别恶意软件变体的方法,具有很高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Malware behavior image for malware variant identification
Several methods have been devised by researchers to facilitate malware analysis and one of them is through malware visualization. Malware visualization is a field that focuses on representing malware features in a form of visual cues that could be used to convey more information about a particular malware. There has been works in malware visualization but unfortunately, there seems to be a lack of focus in visualizing malware behavior. In this paper, we highlight our findings in visualizing malware behavior and its potential benefit for malware classification. Our research shows that malware behavior visualization can be used as a way to identify malware variants with high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved skin detection based on dynamic threshold using multi-colour space Signature-Based Anomaly intrusion detection using Integrated data mining classifiers Distributed Denial of Service detection using hybrid machine learning technique Survey of anti-phishing tools with detection capabilities Effective mining on large databases for intrusion detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1