利用正弦余弦算法训练前馈神经网络,改进对纳米亚硒酸盐养殖鱼肝酶的预测

A. Sahlol, A. Ewees, Ahmed Monem Hemdan, A. Hassanien
{"title":"利用正弦余弦算法训练前馈神经网络,改进对纳米亚硒酸盐养殖鱼肝酶的预测","authors":"A. Sahlol, A. Ewees, Ahmed Monem Hemdan, A. Hassanien","doi":"10.1109/ICENCO.2016.7856442","DOIUrl":null,"url":null,"abstract":"Analytical prediction of oxidative stress biomarkers in ecosystem provides an expressive result for many stressors. These oxidative stress biomarkers including superoxide dismutase, glutathione peroxidase and catalase activity in fish liver tissue were analyzed within feeding different levels of selenium nanoparticles. Se-nanoparticles represent a salient defense mechanism in oxidative stress within certain limits; however, stress can be engendered from toxic levels of these nanoparticles. For instance, prediction of the level of pollution and/or stressors was elucidated to be improved with different levels of selenium nanoparticles using the bio-inspired Sine-Cosine algorithm (SCA). In this paper, we improved the prediction accuracy of liver enzymes of fish fed by nano-selenite by developing a neural network model based on SCA, that can train and update the weights and the biases of the network until reaching the optimum value. The performance of the proposed model is better and achieved more efficient than other models.","PeriodicalId":332360,"journal":{"name":"2016 12th International Computer Engineering Conference (ICENCO)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Training feedforward neural networks using Sine-Cosine algorithm to improve the prediction of liver enzymes on fish farmed on nano-selenite\",\"authors\":\"A. Sahlol, A. Ewees, Ahmed Monem Hemdan, A. Hassanien\",\"doi\":\"10.1109/ICENCO.2016.7856442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analytical prediction of oxidative stress biomarkers in ecosystem provides an expressive result for many stressors. These oxidative stress biomarkers including superoxide dismutase, glutathione peroxidase and catalase activity in fish liver tissue were analyzed within feeding different levels of selenium nanoparticles. Se-nanoparticles represent a salient defense mechanism in oxidative stress within certain limits; however, stress can be engendered from toxic levels of these nanoparticles. For instance, prediction of the level of pollution and/or stressors was elucidated to be improved with different levels of selenium nanoparticles using the bio-inspired Sine-Cosine algorithm (SCA). In this paper, we improved the prediction accuracy of liver enzymes of fish fed by nano-selenite by developing a neural network model based on SCA, that can train and update the weights and the biases of the network until reaching the optimum value. The performance of the proposed model is better and achieved more efficient than other models.\",\"PeriodicalId\":332360,\"journal\":{\"name\":\"2016 12th International Computer Engineering Conference (ICENCO)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 12th International Computer Engineering Conference (ICENCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICENCO.2016.7856442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th International Computer Engineering Conference (ICENCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICENCO.2016.7856442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

摘要

生态系统氧化应激生物标志物的分析预测为多种应激源提供了表达性结果。在饲喂不同水平纳米硒的情况下,分析了鱼肝组织中氧化应激生物标志物,包括超氧化物歧化酶、谷胱甘肽过氧化物酶和过氧化氢酶的活性。硒纳米颗粒在一定范围内表现出明显的氧化应激防御机制;然而,这些纳米颗粒的毒性水平可能会产生压力。例如,利用生物启发的正弦余弦算法(SCA),阐明了不同水平的硒纳米粒子可以改善污染和/或压力源水平的预测。本文通过建立基于SCA的神经网络模型,提高了纳米亚硒酸盐喂鱼肝酶的预测精度,该模型可以训练和更新网络的权值和偏差,直到达到最优值。与其他模型相比,该模型的性能更好,效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Training feedforward neural networks using Sine-Cosine algorithm to improve the prediction of liver enzymes on fish farmed on nano-selenite
Analytical prediction of oxidative stress biomarkers in ecosystem provides an expressive result for many stressors. These oxidative stress biomarkers including superoxide dismutase, glutathione peroxidase and catalase activity in fish liver tissue were analyzed within feeding different levels of selenium nanoparticles. Se-nanoparticles represent a salient defense mechanism in oxidative stress within certain limits; however, stress can be engendered from toxic levels of these nanoparticles. For instance, prediction of the level of pollution and/or stressors was elucidated to be improved with different levels of selenium nanoparticles using the bio-inspired Sine-Cosine algorithm (SCA). In this paper, we improved the prediction accuracy of liver enzymes of fish fed by nano-selenite by developing a neural network model based on SCA, that can train and update the weights and the biases of the network until reaching the optimum value. The performance of the proposed model is better and achieved more efficient than other models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New scheme for CSFB improvement in LTE A robust local data and membership information based FCM algorithm for noisy image segmentation Global distributed clustering technique for randomly deployed wireless sensor networks Grey wolf optimizer-based back-propagation neural network algorithm Loan portfolio optimization using Genetic Algorithm: A case of credit constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1