{"title":"通过局部信息扩散增强自动驾驶车辆的协同意识","authors":"Nikos Piperigkos, A. Lalos, K. Berberidis","doi":"10.1109/INDIN51773.2022.9976168","DOIUrl":null,"url":null,"abstract":"Cooperative Intelligent Transportation Systems envision the integration of cooperative intelligence as a key operational part of autonomous driving. In this way, a fleet or swarm of Connected and Automated Vehicles collectively coordinates its driving actions in order to maximize its performance. To realize this ambition, vehicles need to be fully location-aware of their surrounding environment, through distributed AI intelligence. Motivated by this requirement, we develop in this paper a distributed cooperative awareness scheme which performs multi-modal fusion of heterogeneous sensor sources along with V2V communication information, using graph Laplacian matrix and Least-Mean-Squares algorithm. The intuition behind our approach is that neighboring vehicles are interested in estimating common positions of other vehicles. We build upon our previous work on global awareness though local information diffusion, and prove that the proposed distributed framework is able to address highly efficient the case of lacking any information about other networked vehicles. More specifically, our approach achieves high enough convergence speed as well as location accuracy. The evaluation study has been performed in CARLA autonomous driving simulator and verifies the proposed method’s benefits over other related solutions.","PeriodicalId":359190,"journal":{"name":"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robustifying cooperative awareness in autonomous vehicles through local information diffusion\",\"authors\":\"Nikos Piperigkos, A. Lalos, K. Berberidis\",\"doi\":\"10.1109/INDIN51773.2022.9976168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cooperative Intelligent Transportation Systems envision the integration of cooperative intelligence as a key operational part of autonomous driving. In this way, a fleet or swarm of Connected and Automated Vehicles collectively coordinates its driving actions in order to maximize its performance. To realize this ambition, vehicles need to be fully location-aware of their surrounding environment, through distributed AI intelligence. Motivated by this requirement, we develop in this paper a distributed cooperative awareness scheme which performs multi-modal fusion of heterogeneous sensor sources along with V2V communication information, using graph Laplacian matrix and Least-Mean-Squares algorithm. The intuition behind our approach is that neighboring vehicles are interested in estimating common positions of other vehicles. We build upon our previous work on global awareness though local information diffusion, and prove that the proposed distributed framework is able to address highly efficient the case of lacking any information about other networked vehicles. More specifically, our approach achieves high enough convergence speed as well as location accuracy. The evaluation study has been performed in CARLA autonomous driving simulator and verifies the proposed method’s benefits over other related solutions.\",\"PeriodicalId\":359190,\"journal\":{\"name\":\"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN51773.2022.9976168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN51773.2022.9976168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robustifying cooperative awareness in autonomous vehicles through local information diffusion
Cooperative Intelligent Transportation Systems envision the integration of cooperative intelligence as a key operational part of autonomous driving. In this way, a fleet or swarm of Connected and Automated Vehicles collectively coordinates its driving actions in order to maximize its performance. To realize this ambition, vehicles need to be fully location-aware of their surrounding environment, through distributed AI intelligence. Motivated by this requirement, we develop in this paper a distributed cooperative awareness scheme which performs multi-modal fusion of heterogeneous sensor sources along with V2V communication information, using graph Laplacian matrix and Least-Mean-Squares algorithm. The intuition behind our approach is that neighboring vehicles are interested in estimating common positions of other vehicles. We build upon our previous work on global awareness though local information diffusion, and prove that the proposed distributed framework is able to address highly efficient the case of lacking any information about other networked vehicles. More specifically, our approach achieves high enough convergence speed as well as location accuracy. The evaluation study has been performed in CARLA autonomous driving simulator and verifies the proposed method’s benefits over other related solutions.