基于数据挖掘的医疗企业盈亏预测模型设计

A. Abdolahi, V. Nowzari, A. Pirzad, S. Amirhosseini
{"title":"基于数据挖掘的医疗企业盈亏预测模型设计","authors":"A. Abdolahi, V. Nowzari, A. Pirzad, S. Amirhosseini","doi":"10.30699/fhi.v10i1.305","DOIUrl":null,"url":null,"abstract":"Introduction: Health companies need investment for development. Due to the high risk of their activities, it is very difficult to attract investment for this field, but this lack of financial resources leads to the failure of these companies, so providing a model for predicting profits and losses in companies is very important and functional.Materials and Method: In this study, a combination of two logistic regression algorithms and differential analysis were used to design a profit and loss forecasting model. Also, the information of 20 companies in the field of health was used to evaluate the proposed model. 10 profitable companies and 10 loss-making companies were selected and for each company, nine variables independent of the financial information of these companies were collected.Results: The designed prediction model was implemented on the data in this study. To do this, the data were divided into two sets: training and testing. The prediction model was implemented on training data and evaluated by test data and reached 99.65% sensitivity, 94.75% specificity and 96.28% accuracy. The proposed model was then compared with the methods of decision tree C4.5, Bayesian, support vector machine, nearest neighborhood and multilayer neural network and it was found to have a better output.Conclusion: In this study, it was found that the risk in the field of health investment can be reduced, so the profit and loss situation of health companies can be predicted with appropriate accuracy. It was also found that the combination of logistic regression and differential analysis algorithms can increase the accuracy of the prediction model.","PeriodicalId":154611,"journal":{"name":"Frontiers in Health Informatics","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing a Profit and Loss Prediction Model for Health Companies Using Data Mining\",\"authors\":\"A. Abdolahi, V. Nowzari, A. Pirzad, S. Amirhosseini\",\"doi\":\"10.30699/fhi.v10i1.305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: Health companies need investment for development. Due to the high risk of their activities, it is very difficult to attract investment for this field, but this lack of financial resources leads to the failure of these companies, so providing a model for predicting profits and losses in companies is very important and functional.Materials and Method: In this study, a combination of two logistic regression algorithms and differential analysis were used to design a profit and loss forecasting model. Also, the information of 20 companies in the field of health was used to evaluate the proposed model. 10 profitable companies and 10 loss-making companies were selected and for each company, nine variables independent of the financial information of these companies were collected.Results: The designed prediction model was implemented on the data in this study. To do this, the data were divided into two sets: training and testing. The prediction model was implemented on training data and evaluated by test data and reached 99.65% sensitivity, 94.75% specificity and 96.28% accuracy. The proposed model was then compared with the methods of decision tree C4.5, Bayesian, support vector machine, nearest neighborhood and multilayer neural network and it was found to have a better output.Conclusion: In this study, it was found that the risk in the field of health investment can be reduced, so the profit and loss situation of health companies can be predicted with appropriate accuracy. It was also found that the combination of logistic regression and differential analysis algorithms can increase the accuracy of the prediction model.\",\"PeriodicalId\":154611,\"journal\":{\"name\":\"Frontiers in Health Informatics\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30699/fhi.v10i1.305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30699/fhi.v10i1.305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

健康企业的发展需要投资。由于其活动的高风险,这一领域很难吸引到投资,而资金的缺乏导致了这些公司的失败,因此提供一个预测公司盈亏的模型是非常重要和有效的。材料与方法:本研究采用两种逻辑回归算法与差分分析相结合的方法设计盈亏预测模型。此外,还利用卫生领域20家公司的信息对所提出的模型进行了评价。选取了10家盈利公司和10家亏损公司,每个公司收集了9个独立于这些公司财务信息的变量。结果:设计的预测模型在本研究数据上得以实现。为了做到这一点,数据被分为两组:训练和测试。预测模型在训练数据上实现,通过测试数据进行评估,灵敏度达到99.65%,特异度达到94.75%,准确率达到96.28%。将该模型与决策树C4.5、贝叶斯、支持向量机、最近邻和多层神经网络等方法进行比较,结果表明该模型具有较好的输出效果。结论:本研究发现可以降低健康投资领域的风险,从而可以较为准确地预测健康公司的盈亏状况。研究还发现,逻辑回归与差分分析算法相结合可以提高预测模型的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Designing a Profit and Loss Prediction Model for Health Companies Using Data Mining
Introduction: Health companies need investment for development. Due to the high risk of their activities, it is very difficult to attract investment for this field, but this lack of financial resources leads to the failure of these companies, so providing a model for predicting profits and losses in companies is very important and functional.Materials and Method: In this study, a combination of two logistic regression algorithms and differential analysis were used to design a profit and loss forecasting model. Also, the information of 20 companies in the field of health was used to evaluate the proposed model. 10 profitable companies and 10 loss-making companies were selected and for each company, nine variables independent of the financial information of these companies were collected.Results: The designed prediction model was implemented on the data in this study. To do this, the data were divided into two sets: training and testing. The prediction model was implemented on training data and evaluated by test data and reached 99.65% sensitivity, 94.75% specificity and 96.28% accuracy. The proposed model was then compared with the methods of decision tree C4.5, Bayesian, support vector machine, nearest neighborhood and multilayer neural network and it was found to have a better output.Conclusion: In this study, it was found that the risk in the field of health investment can be reduced, so the profit and loss situation of health companies can be predicted with appropriate accuracy. It was also found that the combination of logistic regression and differential analysis algorithms can increase the accuracy of the prediction model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊最新文献
Self-Care Application for Rheumatoid Arthritis: Identifying Key Data Elements Effective use of electronic health records system for healthcare delivery in Ghana Predictive Modeling of COVID-19 Hospitalization Using Twenty Machine Learning Classification Algorithms on Cohort Data Development and Usability Evaluation of a Web-Based Health Information Technology Dashboard of Quality and Economic Indicators Potentially Highly Effective Drugs for COVID-19: Virtual Screening and Molecular Docking Study Through PyRx-Vina Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1