{"title":"双极双栅极器件的低功耗设计技术","authors":"K. Jabeur, I. O’Connor, D. Navarro, S. L. Beux","doi":"10.1145/2765491.2765495","DOIUrl":null,"url":null,"abstract":"Ambipolar FETs with channels composed of carbon nanotubes, graphene or undoped silicon nanowires have a Vds-dependent Ioff, a source of high leakage, as well as a low VTH, a source of high dynamic power. In this paper, we propose a circuit design technique to solve these issues for low-power logic circuits with ambipolar double-gate transistors, using the in-field controllability via the fourth device terminal. The approach is demonstrated for the complementary static logic design style. It dynamically lowers the dynamic power (short-circuit and capacitive) during the active mode and the static power during the inactive mode. We apply this approach in a simulation-based case study focused on Double Gate Carbon Nanotube FET (DG-CNTFET) technology. Compared to conventional structures, an average improvement of 3X in total power consumption was observed, with a decrease by a factor of 4X in short circuit power, and of 100X in static power (during the standby mode).","PeriodicalId":287602,"journal":{"name":"2012 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Low-power design technique with ambipolar double gate devices\",\"authors\":\"K. Jabeur, I. O’Connor, D. Navarro, S. L. Beux\",\"doi\":\"10.1145/2765491.2765495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ambipolar FETs with channels composed of carbon nanotubes, graphene or undoped silicon nanowires have a Vds-dependent Ioff, a source of high leakage, as well as a low VTH, a source of high dynamic power. In this paper, we propose a circuit design technique to solve these issues for low-power logic circuits with ambipolar double-gate transistors, using the in-field controllability via the fourth device terminal. The approach is demonstrated for the complementary static logic design style. It dynamically lowers the dynamic power (short-circuit and capacitive) during the active mode and the static power during the inactive mode. We apply this approach in a simulation-based case study focused on Double Gate Carbon Nanotube FET (DG-CNTFET) technology. Compared to conventional structures, an average improvement of 3X in total power consumption was observed, with a decrease by a factor of 4X in short circuit power, and of 100X in static power (during the standby mode).\",\"PeriodicalId\":287602,\"journal\":{\"name\":\"2012 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2765491.2765495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2765491.2765495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-power design technique with ambipolar double gate devices
Ambipolar FETs with channels composed of carbon nanotubes, graphene or undoped silicon nanowires have a Vds-dependent Ioff, a source of high leakage, as well as a low VTH, a source of high dynamic power. In this paper, we propose a circuit design technique to solve these issues for low-power logic circuits with ambipolar double-gate transistors, using the in-field controllability via the fourth device terminal. The approach is demonstrated for the complementary static logic design style. It dynamically lowers the dynamic power (short-circuit and capacitive) during the active mode and the static power during the inactive mode. We apply this approach in a simulation-based case study focused on Double Gate Carbon Nanotube FET (DG-CNTFET) technology. Compared to conventional structures, an average improvement of 3X in total power consumption was observed, with a decrease by a factor of 4X in short circuit power, and of 100X in static power (during the standby mode).