双极双栅极器件的低功耗设计技术

K. Jabeur, I. O’Connor, D. Navarro, S. L. Beux
{"title":"双极双栅极器件的低功耗设计技术","authors":"K. Jabeur, I. O’Connor, D. Navarro, S. L. Beux","doi":"10.1145/2765491.2765495","DOIUrl":null,"url":null,"abstract":"Ambipolar FETs with channels composed of carbon nanotubes, graphene or undoped silicon nanowires have a Vds-dependent Ioff, a source of high leakage, as well as a low VTH, a source of high dynamic power. In this paper, we propose a circuit design technique to solve these issues for low-power logic circuits with ambipolar double-gate transistors, using the in-field controllability via the fourth device terminal. The approach is demonstrated for the complementary static logic design style. It dynamically lowers the dynamic power (short-circuit and capacitive) during the active mode and the static power during the inactive mode. We apply this approach in a simulation-based case study focused on Double Gate Carbon Nanotube FET (DG-CNTFET) technology. Compared to conventional structures, an average improvement of 3X in total power consumption was observed, with a decrease by a factor of 4X in short circuit power, and of 100X in static power (during the standby mode).","PeriodicalId":287602,"journal":{"name":"2012 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Low-power design technique with ambipolar double gate devices\",\"authors\":\"K. Jabeur, I. O’Connor, D. Navarro, S. L. Beux\",\"doi\":\"10.1145/2765491.2765495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ambipolar FETs with channels composed of carbon nanotubes, graphene or undoped silicon nanowires have a Vds-dependent Ioff, a source of high leakage, as well as a low VTH, a source of high dynamic power. In this paper, we propose a circuit design technique to solve these issues for low-power logic circuits with ambipolar double-gate transistors, using the in-field controllability via the fourth device terminal. The approach is demonstrated for the complementary static logic design style. It dynamically lowers the dynamic power (short-circuit and capacitive) during the active mode and the static power during the inactive mode. We apply this approach in a simulation-based case study focused on Double Gate Carbon Nanotube FET (DG-CNTFET) technology. Compared to conventional structures, an average improvement of 3X in total power consumption was observed, with a decrease by a factor of 4X in short circuit power, and of 100X in static power (during the standby mode).\",\"PeriodicalId\":287602,\"journal\":{\"name\":\"2012 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2765491.2765495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2765491.2765495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

通道由碳纳米管、石墨烯或未掺杂的硅纳米线组成的双极性场效应管具有依赖于vds的关断,这是高泄漏的来源,以及低VTH,这是高动态功率的来源。在本文中,我们提出了一种电路设计技术,利用第四器件终端的场内可控性来解决双极双栅晶体管的低功耗逻辑电路的这些问题。该方法演示了互补静态逻辑设计风格。动态降低有功模式下的动态功率(短路和电容)和无功模式下的静态功率。我们将这种方法应用于双栅碳纳米管场效应管(DG-CNTFET)技术的模拟案例研究中。与传统结构相比,总功耗平均提高了3倍,短路功耗降低了4倍,静态功耗(待机模式下)降低了100倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-power design technique with ambipolar double gate devices
Ambipolar FETs with channels composed of carbon nanotubes, graphene or undoped silicon nanowires have a Vds-dependent Ioff, a source of high leakage, as well as a low VTH, a source of high dynamic power. In this paper, we propose a circuit design technique to solve these issues for low-power logic circuits with ambipolar double-gate transistors, using the in-field controllability via the fourth device terminal. The approach is demonstrated for the complementary static logic design style. It dynamically lowers the dynamic power (short-circuit and capacitive) during the active mode and the static power during the inactive mode. We apply this approach in a simulation-based case study focused on Double Gate Carbon Nanotube FET (DG-CNTFET) technology. Compared to conventional structures, an average improvement of 3X in total power consumption was observed, with a decrease by a factor of 4X in short circuit power, and of 100X in static power (during the standby mode).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gate-level modeling for CMOS circuit simulation with ultimate FinFETs A novel write-scheme for data integrity in memristor-based crossbar memories Ternary volatile random access memory based on heterogeneous graphene-CMOS fabric Zero-performance-overhead online fault detection and diagnosis in 3D stacked integrated circuits A Monte Carlo analysis of a write method used in passive nanoelectronic crossbars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1