一种在长期脑电图信号中检测癫痫发作的无监督方法

Kostas M. Tsiouris, S. Konitsiotis, S. Markoula, D. Koutsouris, A. Sakellarios, D. Fotiadis
{"title":"一种在长期脑电图信号中检测癫痫发作的无监督方法","authors":"Kostas M. Tsiouris, S. Konitsiotis, S. Markoula, D. Koutsouris, A. Sakellarios, D. Fotiadis","doi":"10.1109/BIBE.2015.7367698","DOIUrl":null,"url":null,"abstract":"An unsupervised methodology for the detection of Epileptic seizures in EEG recordings is proposed. The time-frequency content of the EEG signals is extracted using the Short Time Fourier Transform. The analysis focuses on the EEG energy distribution among the well-established delta, theta and alpha rhythms (2-13 Hz), as energy variations in these frequency bands are widely associated with seizure activity. Relying on seizure rhythmicity, the classification is performed by isolating the segments where each rhythm is more clearly and dominantly expressed over the others. For the first time, an unsupervised methodology is evaluated using more than 978 hours of EEG recordings from a public database. The results show that the proposed methodology achieves high seizure detection sensitivity with significantly reduced human intervention.","PeriodicalId":422807,"journal":{"name":"2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"An unsupervised methodology for the detection of epileptic seizures in long-term EEG signals\",\"authors\":\"Kostas M. Tsiouris, S. Konitsiotis, S. Markoula, D. Koutsouris, A. Sakellarios, D. Fotiadis\",\"doi\":\"10.1109/BIBE.2015.7367698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An unsupervised methodology for the detection of Epileptic seizures in EEG recordings is proposed. The time-frequency content of the EEG signals is extracted using the Short Time Fourier Transform. The analysis focuses on the EEG energy distribution among the well-established delta, theta and alpha rhythms (2-13 Hz), as energy variations in these frequency bands are widely associated with seizure activity. Relying on seizure rhythmicity, the classification is performed by isolating the segments where each rhythm is more clearly and dominantly expressed over the others. For the first time, an unsupervised methodology is evaluated using more than 978 hours of EEG recordings from a public database. The results show that the proposed methodology achieves high seizure detection sensitivity with significantly reduced human intervention.\",\"PeriodicalId\":422807,\"journal\":{\"name\":\"2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2015.7367698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2015.7367698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种用于脑电图记录中癫痫发作检测的无监督方法。利用短时傅里叶变换提取脑电信号的时频内容。分析的重点是确定的δ、θ和α节律(2-13 Hz)之间的脑电图能量分布,因为这些频段的能量变化与癫痫发作活动广泛相关。根据发作节律性,通过分离每个节律比其他节律表达得更清楚、更占优势的片段来进行分类。首次使用来自公共数据库的超过978小时的脑电图记录来评估无监督方法。结果表明,该方法在显著减少人为干预的情况下实现了较高的癫痫检测灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An unsupervised methodology for the detection of epileptic seizures in long-term EEG signals
An unsupervised methodology for the detection of Epileptic seizures in EEG recordings is proposed. The time-frequency content of the EEG signals is extracted using the Short Time Fourier Transform. The analysis focuses on the EEG energy distribution among the well-established delta, theta and alpha rhythms (2-13 Hz), as energy variations in these frequency bands are widely associated with seizure activity. Relying on seizure rhythmicity, the classification is performed by isolating the segments where each rhythm is more clearly and dominantly expressed over the others. For the first time, an unsupervised methodology is evaluated using more than 978 hours of EEG recordings from a public database. The results show that the proposed methodology achieves high seizure detection sensitivity with significantly reduced human intervention.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated SOSORT-recommended angles measurement in patients with adolescent idiopathic scoliosis Estimating changes in a cognitive performance using heart rate variability Some examples on the performance of density functional theory in the description of bioinorganic systems and processes Modeling the metabolism of escherichia coli under oxygen gradients with dynamically changing flux bounds An automated approach to conduct effective on-site presumptive drug tests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1