基于深度卷积神经网络的视频目录关键帧提取算法研究

Yibei Chen, Ling Zhang, Xinghua Zhang, Yu Zhao, Yao-Min Feng, Yiyong Lin
{"title":"基于深度卷积神经网络的视频目录关键帧提取算法研究","authors":"Yibei Chen, Ling Zhang, Xinghua Zhang, Yu Zhao, Yao-Min Feng, Yiyong Lin","doi":"10.1117/12.2640688","DOIUrl":null,"url":null,"abstract":"With the gradual improvement of space launch sites image communication system construction, Visual command is increasingly demanding video image retrieval. The previous keyword retrieval method can not meet the requirements of new generation space mission network communication, content-based retrieval need to be developed. In view of the problem that video information is unstructured and cannot be quickly previewed, this paper studies the video key frame extraction algorithm and propose a video key frame extraction algorithm based on convolutional neural network.","PeriodicalId":336892,"journal":{"name":"Neural Networks, Information and Communication Engineering","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on key frame extraction algorithm based on deep convolutional neural network in video catalogue\",\"authors\":\"Yibei Chen, Ling Zhang, Xinghua Zhang, Yu Zhao, Yao-Min Feng, Yiyong Lin\",\"doi\":\"10.1117/12.2640688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the gradual improvement of space launch sites image communication system construction, Visual command is increasingly demanding video image retrieval. The previous keyword retrieval method can not meet the requirements of new generation space mission network communication, content-based retrieval need to be developed. In view of the problem that video information is unstructured and cannot be quickly previewed, this paper studies the video key frame extraction algorithm and propose a video key frame extraction algorithm based on convolutional neural network.\",\"PeriodicalId\":336892,\"journal\":{\"name\":\"Neural Networks, Information and Communication Engineering\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks, Information and Communication Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2640688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks, Information and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2640688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着航天发射场图像通信系统建设的逐步完善,可视化指挥对视频图像检索的要求越来越高。现有的关键词检索方法已不能满足新一代航天任务网络通信的要求,需要发展基于内容的检索方法。针对视频信息非结构化、无法快速预览的问题,本文对视频关键帧提取算法进行了研究,提出了一种基于卷积神经网络的视频关键帧提取算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on key frame extraction algorithm based on deep convolutional neural network in video catalogue
With the gradual improvement of space launch sites image communication system construction, Visual command is increasingly demanding video image retrieval. The previous keyword retrieval method can not meet the requirements of new generation space mission network communication, content-based retrieval need to be developed. In view of the problem that video information is unstructured and cannot be quickly previewed, this paper studies the video key frame extraction algorithm and propose a video key frame extraction algorithm based on convolutional neural network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improve vulnerability prediction performance using self-attention mechanism and convolutional neural network Design of digital pulse-position modulation system based on minimum distance method Design of an externally adjustable oscillator circuit Research on non-intrusive video capture technology based on FPD-linkⅢ The communication process of digital binary pulse-position modulation with additive white Gaussian noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1