Xinran Yu, H. Zhang, T. Lilburn, Hong Cai, Jianying Gu, T. Korkmaz, Yufeng Wang
{"title":"在红细胞循环过程中,疟疾寄生虫恶性疟原虫细胞网络中影响基因的及时表达","authors":"Xinran Yu, H. Zhang, T. Lilburn, Hong Cai, Jianying Gu, T. Korkmaz, Yufeng Wang","doi":"10.1109/BIBM.2016.7822526","DOIUrl":null,"url":null,"abstract":"Malaria remains one of the most important public health concerns worldwide. It causes nearly half a million deaths every year, and about 40% of the world's population lives in the endemic regions of malaria. A major hurdle in antimalarial development is our limited understanding of the dynamic cellular networks in the malaria parasite. In this study, by coupling RNA-Seq analysis and network mining using a PageRank-based algorithm, we investigated the temporal-specific expression of parasite genes during the 48-hour red blood cycle, and identified genes that may play influential roles in parasite development and invasion. The just-in-time mechanism for gene expression may contribute to a dynamic yet effective adaptive strategy of the malaria parasite.","PeriodicalId":345384,"journal":{"name":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Just-in-time expression of influential genes in the cellular networks of the malaria parasite Plasmodium falciparum during the red blood cycle\",\"authors\":\"Xinran Yu, H. Zhang, T. Lilburn, Hong Cai, Jianying Gu, T. Korkmaz, Yufeng Wang\",\"doi\":\"10.1109/BIBM.2016.7822526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Malaria remains one of the most important public health concerns worldwide. It causes nearly half a million deaths every year, and about 40% of the world's population lives in the endemic regions of malaria. A major hurdle in antimalarial development is our limited understanding of the dynamic cellular networks in the malaria parasite. In this study, by coupling RNA-Seq analysis and network mining using a PageRank-based algorithm, we investigated the temporal-specific expression of parasite genes during the 48-hour red blood cycle, and identified genes that may play influential roles in parasite development and invasion. The just-in-time mechanism for gene expression may contribute to a dynamic yet effective adaptive strategy of the malaria parasite.\",\"PeriodicalId\":345384,\"journal\":{\"name\":\"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2016.7822526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2016.7822526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Just-in-time expression of influential genes in the cellular networks of the malaria parasite Plasmodium falciparum during the red blood cycle
Malaria remains one of the most important public health concerns worldwide. It causes nearly half a million deaths every year, and about 40% of the world's population lives in the endemic regions of malaria. A major hurdle in antimalarial development is our limited understanding of the dynamic cellular networks in the malaria parasite. In this study, by coupling RNA-Seq analysis and network mining using a PageRank-based algorithm, we investigated the temporal-specific expression of parasite genes during the 48-hour red blood cycle, and identified genes that may play influential roles in parasite development and invasion. The just-in-time mechanism for gene expression may contribute to a dynamic yet effective adaptive strategy of the malaria parasite.