Hadeel Afifi, M. Elmahdy, M. E. Saban, Mervat Abu-Elkheir
{"title":"非常规油气生产井概率时间序列预测","authors":"Hadeel Afifi, M. Elmahdy, M. E. Saban, Mervat Abu-Elkheir","doi":"10.1109/NILES50944.2020.9257962","DOIUrl":null,"url":null,"abstract":"Time-series forecasting, the process of predicting values in the future given the present and previous history, is a challenging problem to tackle. Deterministic forecasting methods were thoroughly investigated but had limitations regarding reliability. Recent research efforts are exploring the advantages that come with probabilistic forecasting. The need to have large datasets for time-series to build more generalized models and thus being less dependent on data augmentation is also driving efforts to collect comprehensive data. This paper proposes a machine learning model to estimate prediction intervals on a large oil production dataset. Prediction intervals are estimated at different percentiles. Prediction Interval Coverage Probability (PICP) and Prediction Interval Normalized Average Width (PINAW) metrics are used for performance evaluation. The best results are obtained by removing trend and using differencing.","PeriodicalId":253090,"journal":{"name":"2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Probabilistic Time Series Forecasting for Unconventional Oil and Gas Producing Wells\",\"authors\":\"Hadeel Afifi, M. Elmahdy, M. E. Saban, Mervat Abu-Elkheir\",\"doi\":\"10.1109/NILES50944.2020.9257962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time-series forecasting, the process of predicting values in the future given the present and previous history, is a challenging problem to tackle. Deterministic forecasting methods were thoroughly investigated but had limitations regarding reliability. Recent research efforts are exploring the advantages that come with probabilistic forecasting. The need to have large datasets for time-series to build more generalized models and thus being less dependent on data augmentation is also driving efforts to collect comprehensive data. This paper proposes a machine learning model to estimate prediction intervals on a large oil production dataset. Prediction intervals are estimated at different percentiles. Prediction Interval Coverage Probability (PICP) and Prediction Interval Normalized Average Width (PINAW) metrics are used for performance evaluation. The best results are obtained by removing trend and using differencing.\",\"PeriodicalId\":253090,\"journal\":{\"name\":\"2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NILES50944.2020.9257962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NILES50944.2020.9257962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Probabilistic Time Series Forecasting for Unconventional Oil and Gas Producing Wells
Time-series forecasting, the process of predicting values in the future given the present and previous history, is a challenging problem to tackle. Deterministic forecasting methods were thoroughly investigated but had limitations regarding reliability. Recent research efforts are exploring the advantages that come with probabilistic forecasting. The need to have large datasets for time-series to build more generalized models and thus being less dependent on data augmentation is also driving efforts to collect comprehensive data. This paper proposes a machine learning model to estimate prediction intervals on a large oil production dataset. Prediction intervals are estimated at different percentiles. Prediction Interval Coverage Probability (PICP) and Prediction Interval Normalized Average Width (PINAW) metrics are used for performance evaluation. The best results are obtained by removing trend and using differencing.