基于谱差和最小错误率的人脸表情识别Gabor滤波器选择

S. Lajevardi, Z. M. Hussain
{"title":"基于谱差和最小错误率的人脸表情识别Gabor滤波器选择","authors":"S. Lajevardi, Z. M. Hussain","doi":"10.1109/DICTA.2010.33","DOIUrl":null,"url":null,"abstract":"A new feature selection approach is proposed for facial expression recognition system. The features are extracted using Gabor filters from Grey-scale images for characterizing facial texture. Then, an adaptive filter selection (AFS) algorithm is applied to choose the best subset of Gabor filters with different scales and orientations. In AFS algorithm, the filters are selected based on spectral difference between the original image and the noisy image in Gabor wavelet domain. After that, the optimum subset of filters is selected based on minimum error rate. This subset of Gabor filters is used for feature extraction. The extracted features are classified by adopting a multiple linear discriminant analysis (LDA) classifier. Experiments on different databases are carried out that the method is efficient for facial expression recognition.","PeriodicalId":246460,"journal":{"name":"2010 International Conference on Digital Image Computing: Techniques and Applications","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Novel Gabor Filter Selection Based on Spectral Difference and Minimum Error Rate for Facial Expression Recognition\",\"authors\":\"S. Lajevardi, Z. M. Hussain\",\"doi\":\"10.1109/DICTA.2010.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new feature selection approach is proposed for facial expression recognition system. The features are extracted using Gabor filters from Grey-scale images for characterizing facial texture. Then, an adaptive filter selection (AFS) algorithm is applied to choose the best subset of Gabor filters with different scales and orientations. In AFS algorithm, the filters are selected based on spectral difference between the original image and the noisy image in Gabor wavelet domain. After that, the optimum subset of filters is selected based on minimum error rate. This subset of Gabor filters is used for feature extraction. The extracted features are classified by adopting a multiple linear discriminant analysis (LDA) classifier. Experiments on different databases are carried out that the method is efficient for facial expression recognition.\",\"PeriodicalId\":246460,\"journal\":{\"name\":\"2010 International Conference on Digital Image Computing: Techniques and Applications\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Digital Image Computing: Techniques and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2010.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2010.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种新的面部表情识别特征选择方法。使用Gabor滤波器从灰度图像中提取特征以表征面部纹理。然后,应用自适应滤波器选择(AFS)算法选择不同尺度和方向的Gabor滤波器的最佳子集;在AFS算法中,根据原始图像与噪声图像在Gabor小波域中的频谱差选择滤波器。然后,基于最小错误率选择滤波器的最优子集。Gabor过滤器的这个子集用于特征提取。采用多元线性判别分析(LDA)分类器对提取的特征进行分类。在不同数据库上进行的实验表明,该方法对人脸表情识别是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Gabor Filter Selection Based on Spectral Difference and Minimum Error Rate for Facial Expression Recognition
A new feature selection approach is proposed for facial expression recognition system. The features are extracted using Gabor filters from Grey-scale images for characterizing facial texture. Then, an adaptive filter selection (AFS) algorithm is applied to choose the best subset of Gabor filters with different scales and orientations. In AFS algorithm, the filters are selected based on spectral difference between the original image and the noisy image in Gabor wavelet domain. After that, the optimum subset of filters is selected based on minimum error rate. This subset of Gabor filters is used for feature extraction. The extracted features are classified by adopting a multiple linear discriminant analysis (LDA) classifier. Experiments on different databases are carried out that the method is efficient for facial expression recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pulse Repetition Interval Modulation Recognition Using Symbolization Vessel Segmentation from Color Retinal Images with Varying Contrast and Central Reflex Properties A Novel Algorithm for Text Detection and Localization in Natural Scene Images Image Retrieval with a Visual Thesaurus Chromosome Classification Based on Wavelet Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1