分布式遗传规划中亚种群的群集

Giedrius Paulikas, D. Rubliauskas
{"title":"分布式遗传规划中亚种群的群集","authors":"Giedrius Paulikas, D. Rubliauskas","doi":"10.1109/ISDA.2005.46","DOIUrl":null,"url":null,"abstract":"The distribution of the genetic programming algorithm improves the efficiency of the search for the solution, but additional parameters of this distribution are undesirable. This paper presents the analysis of early experimental results of using flocking to control interactions among the distributed subpopulations so less human intervention is needed The possibility to set up migration parameters dynamically at the run time brings the distributed genetic programming algorithm to the same level of automation as standard genetic programming while keeping the increased performance of the distributed GP. The paper discusses the nature of the required additional computations of the GP algorithm when adapting flocking for migration control. The positive empirical results support the idea of mixing both search techniques together.","PeriodicalId":345842,"journal":{"name":"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Flocking of subpopulations in distributed genetic programming\",\"authors\":\"Giedrius Paulikas, D. Rubliauskas\",\"doi\":\"10.1109/ISDA.2005.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The distribution of the genetic programming algorithm improves the efficiency of the search for the solution, but additional parameters of this distribution are undesirable. This paper presents the analysis of early experimental results of using flocking to control interactions among the distributed subpopulations so less human intervention is needed The possibility to set up migration parameters dynamically at the run time brings the distributed genetic programming algorithm to the same level of automation as standard genetic programming while keeping the increased performance of the distributed GP. The paper discusses the nature of the required additional computations of the GP algorithm when adapting flocking for migration control. The positive empirical results support the idea of mixing both search techniques together.\",\"PeriodicalId\":345842,\"journal\":{\"name\":\"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2005.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Conference on Intelligent Systems Design and Applications (ISDA'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2005.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

遗传规划算法的分布提高了求解效率,但这种分布的附加参数是不可取的。本文对早期实验结果进行了分析,分析了利用群集控制分布子种群之间的相互作用,从而减少了人工干预。在运行时动态设置迁移参数的可能性使分布式遗传规划算法达到了与标准遗传规划相同的自动化水平,同时保持了分布式遗传规划的提高性能。本文讨论了GP算法在采用群集进行迁移控制时所需额外计算量的性质。实证结果支持将两种搜索技术混合在一起的想法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flocking of subpopulations in distributed genetic programming
The distribution of the genetic programming algorithm improves the efficiency of the search for the solution, but additional parameters of this distribution are undesirable. This paper presents the analysis of early experimental results of using flocking to control interactions among the distributed subpopulations so less human intervention is needed The possibility to set up migration parameters dynamically at the run time brings the distributed genetic programming algorithm to the same level of automation as standard genetic programming while keeping the increased performance of the distributed GP. The paper discusses the nature of the required additional computations of the GP algorithm when adapting flocking for migration control. The positive empirical results support the idea of mixing both search techniques together.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distributed service-oriented architecture for information extraction system "Semanta" HAUNT-24: 24-bit hierarchical, application-confined unique naming technique The verification's criterion of learning algorithm New evolutionary approach to the GCP: a premature convergence and an evolution process character A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjective optimizers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1