{"title":"交易数据的顺序响应GARCH模型:预测练习","authors":"S. Dimitrakopoulos, M. Tsionas","doi":"10.2139/ssrn.3210078","DOIUrl":null,"url":null,"abstract":"We use numerous high-frequency transaction data sets to evaluate the forecasting performances of several dynamic ordinal-response time series models with generalized autoregressive conditional heteroscedasticity (GARCH). The specifications account for three components: leverage effects, in-mean effects and moving average error terms. We estimate the model parameters by developing Markov chain Monte Carlo algorithms. Our empirical analysis shows that the proposed ordinal-response GARCH models achieve better point and density forecasts than standard benchmarks.","PeriodicalId":384078,"journal":{"name":"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ordinal-Response GARCH Models for Transaction Data: A Forecasting Exercise\",\"authors\":\"S. Dimitrakopoulos, M. Tsionas\",\"doi\":\"10.2139/ssrn.3210078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use numerous high-frequency transaction data sets to evaluate the forecasting performances of several dynamic ordinal-response time series models with generalized autoregressive conditional heteroscedasticity (GARCH). The specifications account for three components: leverage effects, in-mean effects and moving average error terms. We estimate the model parameters by developing Markov chain Monte Carlo algorithms. Our empirical analysis shows that the proposed ordinal-response GARCH models achieve better point and density forecasts than standard benchmarks.\",\"PeriodicalId\":384078,\"journal\":{\"name\":\"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3210078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3210078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ordinal-Response GARCH Models for Transaction Data: A Forecasting Exercise
We use numerous high-frequency transaction data sets to evaluate the forecasting performances of several dynamic ordinal-response time series models with generalized autoregressive conditional heteroscedasticity (GARCH). The specifications account for three components: leverage effects, in-mean effects and moving average error terms. We estimate the model parameters by developing Markov chain Monte Carlo algorithms. Our empirical analysis shows that the proposed ordinal-response GARCH models achieve better point and density forecasts than standard benchmarks.