基于Google室内街景和cnn位置识别的移动机器人因子图定位

K. Tennakoon, O. de Silva, Awantha Jayasiri, G. Mann, R. Gosine
{"title":"基于Google室内街景和cnn位置识别的移动机器人因子图定位","authors":"K. Tennakoon, O. de Silva, Awantha Jayasiri, G. Mann, R. Gosine","doi":"10.1139/dsa-2022-0045","DOIUrl":null,"url":null,"abstract":"This article proposes a mobile robot localization system developed using Google Indoor Street View (GISV) and Convolutional Neural Network (CNN) based visual place recognition. The proposed localization system consists of two main modules. The first is a place recognition module based on GISV and a net Vector of Locally Aggregated Descriptors (VLAD)-based CNN. The second is a factor graph-based optimization module. In this work, we show that a CNN-based approach can be utilized to overcome the lack of visually distinct features in indoor environments and changes in images that can occur when using different cameras at different points in time for localization. The proposed CNN-based localization system is implemented using reference and query images obtained from two different sources (GISV and a camera attached to a mobile robot). It has been experimentally validated using a custom indoor dataset captured at the Memorial University of Newfoundland (MUN) engineering building basement. The main results of this paper show that GISV-based place recognition reduces the percentage drift by 4 % for the dataset and achieves a Root Mean Square Error (RMSE) of 2 m for position and 2.5° for orientation.","PeriodicalId":202289,"journal":{"name":"Drone Systems and Applications","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Factor Graph Localization for Mobile Robots using Google Indoor Street View and CNN-based Place Recognition\",\"authors\":\"K. Tennakoon, O. de Silva, Awantha Jayasiri, G. Mann, R. Gosine\",\"doi\":\"10.1139/dsa-2022-0045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes a mobile robot localization system developed using Google Indoor Street View (GISV) and Convolutional Neural Network (CNN) based visual place recognition. The proposed localization system consists of two main modules. The first is a place recognition module based on GISV and a net Vector of Locally Aggregated Descriptors (VLAD)-based CNN. The second is a factor graph-based optimization module. In this work, we show that a CNN-based approach can be utilized to overcome the lack of visually distinct features in indoor environments and changes in images that can occur when using different cameras at different points in time for localization. The proposed CNN-based localization system is implemented using reference and query images obtained from two different sources (GISV and a camera attached to a mobile robot). It has been experimentally validated using a custom indoor dataset captured at the Memorial University of Newfoundland (MUN) engineering building basement. The main results of this paper show that GISV-based place recognition reduces the percentage drift by 4 % for the dataset and achieves a Root Mean Square Error (RMSE) of 2 m for position and 2.5° for orientation.\",\"PeriodicalId\":202289,\"journal\":{\"name\":\"Drone Systems and Applications\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drone Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/dsa-2022-0045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drone Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/dsa-2022-0045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于谷歌室内街景(GISV)和卷积神经网络(CNN)视觉位置识别的移动机器人定位系统。提出的定位系统包括两个主要模块。第一个是基于GISV的位置识别模块和基于CNN的局部聚合描述子(VLAD)的网络向量。第二个是基于因子图的优化模块。在这项工作中,我们展示了一种基于cnn的方法可以用来克服室内环境中缺乏视觉上明显的特征,以及在不同时间点使用不同相机进行定位时可能出现的图像变化。本文提出的基于cnn的定位系统使用从两个不同来源(GISV和移动机器人上的相机)获得的参考和查询图像来实现。它已经使用在纽芬兰纪念大学(MUN)工程大楼地下室捕获的自定义室内数据集进行了实验验证。本文的主要结果表明,基于gisv的位置识别将数据集的百分比漂移减少了4%,并实现了位置的均方根误差(RMSE)为2 m,方向的均方根误差为2.5°。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Factor Graph Localization for Mobile Robots using Google Indoor Street View and CNN-based Place Recognition
This article proposes a mobile robot localization system developed using Google Indoor Street View (GISV) and Convolutional Neural Network (CNN) based visual place recognition. The proposed localization system consists of two main modules. The first is a place recognition module based on GISV and a net Vector of Locally Aggregated Descriptors (VLAD)-based CNN. The second is a factor graph-based optimization module. In this work, we show that a CNN-based approach can be utilized to overcome the lack of visually distinct features in indoor environments and changes in images that can occur when using different cameras at different points in time for localization. The proposed CNN-based localization system is implemented using reference and query images obtained from two different sources (GISV and a camera attached to a mobile robot). It has been experimentally validated using a custom indoor dataset captured at the Memorial University of Newfoundland (MUN) engineering building basement. The main results of this paper show that GISV-based place recognition reduces the percentage drift by 4 % for the dataset and achieves a Root Mean Square Error (RMSE) of 2 m for position and 2.5° for orientation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Capacity modelling for UAM Smart Data Harvesting in Cache-Enabled MANETs: UAVs, Future Position Prediction, and Autonomous Path Planning U-SMART: Unified Swarm Management and Resource Tracking Framework for Unoccupied Aerial Vehicles Swarm of Drones for Surveillance Monitoring of a Grounded Target: An event-triggered approach Three-Dimensional Path Planning and Collision-Free Flight Control for Drone-Assisted Autonomous Pollination Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1