奇偶记录克服冗余磁盘阵列中的小写问题

Daniel Stodolsky, G. Gibson, M. Holland
{"title":"奇偶记录克服冗余磁盘阵列中的小写问题","authors":"Daniel Stodolsky, G. Gibson, M. Holland","doi":"10.1145/165123.165143","DOIUrl":null,"url":null,"abstract":"Parity encoded redundant disk arrays provide highly reliable, cost effective secondary storage with high performance for read accesses and large write accesses. Their performance on small writes, however, is much worse than mirrored disks—the traditional, highly reliable, but expensive organization for secondary storage. Unfortunately, small writes are a substantial portion of the I/O workload of many important, demanding applications such as on-line transaction processing. This paper presents parity logging, a novel solution to the small write problem for redundant disk arrays. Parity logging applies journalling techniques to substantially reduce the cost of small writes. We provide a detailed analysis of parity logging and competing schemes—mirroring, floating storage, and RAID level 5— and verify these models by simulation. Parity logging provides performance competitive with mirroring, the best of the alternative single failure tolerating disk array organizations. However, its overhead cost is close to the minimum offered by RAID level 5. Finally, parity logging can exploit data caching much more effectively than all three alternative approaches.","PeriodicalId":410022,"journal":{"name":"Proceedings of the 20th Annual International Symposium on Computer Architecture","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1993-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"164","resultStr":"{\"title\":\"Parity Logging Overcoming The Small Write Problem In Redundant Disk Arrays\",\"authors\":\"Daniel Stodolsky, G. Gibson, M. Holland\",\"doi\":\"10.1145/165123.165143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parity encoded redundant disk arrays provide highly reliable, cost effective secondary storage with high performance for read accesses and large write accesses. Their performance on small writes, however, is much worse than mirrored disks—the traditional, highly reliable, but expensive organization for secondary storage. Unfortunately, small writes are a substantial portion of the I/O workload of many important, demanding applications such as on-line transaction processing. This paper presents parity logging, a novel solution to the small write problem for redundant disk arrays. Parity logging applies journalling techniques to substantially reduce the cost of small writes. We provide a detailed analysis of parity logging and competing schemes—mirroring, floating storage, and RAID level 5— and verify these models by simulation. Parity logging provides performance competitive with mirroring, the best of the alternative single failure tolerating disk array organizations. However, its overhead cost is close to the minimum offered by RAID level 5. Finally, parity logging can exploit data caching much more effectively than all three alternative approaches.\",\"PeriodicalId\":410022,\"journal\":{\"name\":\"Proceedings of the 20th Annual International Symposium on Computer Architecture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"164\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 20th Annual International Symposium on Computer Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/165123.165143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th Annual International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/165123.165143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 164

摘要

奇偶校验编码冗余磁盘阵列为读访问和大写访问提供了高可靠性、高性价比的二级存储。但是,它们在进行小的写操作时的性能要比镜像磁盘差得多,镜像磁盘是用于辅助存储的传统的、高度可靠的、但是昂贵的组织。不幸的是,在许多重要的、要求很高的应用程序(如在线事务处理)中,小的写操作占I/O工作负载的很大一部分。针对冗余磁盘阵列的小写入问题,提出了一种新颖的奇偶日志方法。奇偶性日志记录应用日志记录技术来大幅降低小写操作的成本。我们提供了奇偶记录和竞争方案(镜像、浮动存储和RAID级别5)的详细分析,并通过仿真验证了这些模型。奇偶校验日志提供了与镜像相媲美的性能,镜像是可选的单故障容忍度最好的磁盘阵列组织。但是,它的开销成本接近RAID级别5提供的最小值。最后,奇偶校验日志可以比所有三种替代方法更有效地利用数据缓存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parity Logging Overcoming The Small Write Problem In Redundant Disk Arrays
Parity encoded redundant disk arrays provide highly reliable, cost effective secondary storage with high performance for read accesses and large write accesses. Their performance on small writes, however, is much worse than mirrored disks—the traditional, highly reliable, but expensive organization for secondary storage. Unfortunately, small writes are a substantial portion of the I/O workload of many important, demanding applications such as on-line transaction processing. This paper presents parity logging, a novel solution to the small write problem for redundant disk arrays. Parity logging applies journalling techniques to substantially reduce the cost of small writes. We provide a detailed analysis of parity logging and competing schemes—mirroring, floating storage, and RAID level 5— and verify these models by simulation. Parity logging provides performance competitive with mirroring, the best of the alternative single failure tolerating disk array organizations. However, its overhead cost is close to the minimum offered by RAID level 5. Finally, parity logging can exploit data caching much more effectively than all three alternative approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design Tradeoffs For Software-managed Tlbs The Architecture Of A Fault-tolerant Cached RAID Controller Architectural Support For Translation Table Management In Large Address Space Machines The TickerTAIP Parallel RAID Architecture Hierarchical Performance Modeling With MACS: A Case Study Of The Convex C-240
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1