基于x射线图像的肺炎检测的多重深度学习方法

Zonglin Yang, Qiang Zhao
{"title":"基于x射线图像的肺炎检测的多重深度学习方法","authors":"Zonglin Yang, Qiang Zhao","doi":"10.1109/ICMLC51923.2020.9469043","DOIUrl":null,"url":null,"abstract":"Pneumonia is a lung disease caused by bacterial or viral infection. Early diagnosis is an important factor for successful treatment. In this study, we use three well-known convolutional neural network models, namely Faster RCNN ResNet-101, Mask RCNN ResNet-101, and Mask RCNN ResNet-50 for detection of pneumonia. We use data augmentation, transfer learning and fine-tuning in the training stage. Experimental results show that different networks have different characteristics on the same dataset. Therefore, we propose a multiple deep learner approach to improve the prediction performance via combination of different object detection models. As a result, the proposed approach can find more opacity areas of the lungs where the early symptoms are not evident. While maintaining the prediction accuracy, the proposed method can predict the bounding box size more precisely with a higher confidence score.","PeriodicalId":170815,"journal":{"name":"2020 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Multiple Deep Learner Approach for X-Ray Image-Based Pneumonia Detection\",\"authors\":\"Zonglin Yang, Qiang Zhao\",\"doi\":\"10.1109/ICMLC51923.2020.9469043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pneumonia is a lung disease caused by bacterial or viral infection. Early diagnosis is an important factor for successful treatment. In this study, we use three well-known convolutional neural network models, namely Faster RCNN ResNet-101, Mask RCNN ResNet-101, and Mask RCNN ResNet-50 for detection of pneumonia. We use data augmentation, transfer learning and fine-tuning in the training stage. Experimental results show that different networks have different characteristics on the same dataset. Therefore, we propose a multiple deep learner approach to improve the prediction performance via combination of different object detection models. As a result, the proposed approach can find more opacity areas of the lungs where the early symptoms are not evident. While maintaining the prediction accuracy, the proposed method can predict the bounding box size more precisely with a higher confidence score.\",\"PeriodicalId\":170815,\"journal\":{\"name\":\"2020 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Machine Learning and Cybernetics (ICMLC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC51923.2020.9469043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Machine Learning and Cybernetics (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC51923.2020.9469043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

肺炎是一种由细菌或病毒感染引起的肺部疾病。早期诊断是成功治疗的重要因素。在本研究中,我们使用了三个著名的卷积神经网络模型,即Faster RCNN ResNet-101、Mask RCNN ResNet-101和Mask RCNN ResNet-50来检测肺炎。我们在训练阶段使用数据增强、迁移学习和微调。实验结果表明,不同的网络在同一数据集上具有不同的特征。因此,我们提出了一种多深度学习方法,通过组合不同的目标检测模型来提高预测性能。因此,该方法可以发现更多早期症状不明显的肺不透明区域。在保持预测精度的同时,该方法能够以较高的置信度更精确地预测边界盒大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Multiple Deep Learner Approach for X-Ray Image-Based Pneumonia Detection
Pneumonia is a lung disease caused by bacterial or viral infection. Early diagnosis is an important factor for successful treatment. In this study, we use three well-known convolutional neural network models, namely Faster RCNN ResNet-101, Mask RCNN ResNet-101, and Mask RCNN ResNet-50 for detection of pneumonia. We use data augmentation, transfer learning and fine-tuning in the training stage. Experimental results show that different networks have different characteristics on the same dataset. Therefore, we propose a multiple deep learner approach to improve the prediction performance via combination of different object detection models. As a result, the proposed approach can find more opacity areas of the lungs where the early symptoms are not evident. While maintaining the prediction accuracy, the proposed method can predict the bounding box size more precisely with a higher confidence score.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Behavioral Decision Makings: Reconciling Behavioral Economics and Decision Systems Operating System Classification: A Minimalist Approach Research on Hotspot Mining Method of Twitter News Report Based on LDA and Sentiment Analysis Conservative Generalisation for Small Data Analytics –An Extended Lattice Machine Approach ICMLC 2020 Cover Page
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1