基于自适应建模的燃料电池汽车车载诊断概念

C. Nitsche, S. Schroedl, W. Weiss
{"title":"基于自适应建模的燃料电池汽车车载诊断概念","authors":"C. Nitsche, S. Schroedl, W. Weiss","doi":"10.1109/IVS.2004.1336368","DOIUrl":null,"url":null,"abstract":"Fuel cell vehicles and fuel cell research is one of the newer areas in automotive technology. This paper describes an approach that utilizes artificial neural networks to alleviate the task of onboard diagnostics for fuel cell vehicles. The basic idea is an online learning scenario that trains a power train model with every-day driving data; this model can then be used to estimate a characteristic curve by feeding it with predefined input variables corresponding to the constant conditions of a stationary workshop test. In this way, a major obstacle for on-line diagnosis, namely the multitude of varying nuisance variables, can be compensated for. For a diagnosis algorithm, it is considerably easier to compare the resulting predicted characteristic curve with an ideal reference curve, rather than to directly deal with all the influence factors.","PeriodicalId":296386,"journal":{"name":"IEEE Intelligent Vehicles Symposium, 2004","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Onboard diagnostics concept for fuel cell vehicles using adaptive modelling\",\"authors\":\"C. Nitsche, S. Schroedl, W. Weiss\",\"doi\":\"10.1109/IVS.2004.1336368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fuel cell vehicles and fuel cell research is one of the newer areas in automotive technology. This paper describes an approach that utilizes artificial neural networks to alleviate the task of onboard diagnostics for fuel cell vehicles. The basic idea is an online learning scenario that trains a power train model with every-day driving data; this model can then be used to estimate a characteristic curve by feeding it with predefined input variables corresponding to the constant conditions of a stationary workshop test. In this way, a major obstacle for on-line diagnosis, namely the multitude of varying nuisance variables, can be compensated for. For a diagnosis algorithm, it is considerably easier to compare the resulting predicted characteristic curve with an ideal reference curve, rather than to directly deal with all the influence factors.\",\"PeriodicalId\":296386,\"journal\":{\"name\":\"IEEE Intelligent Vehicles Symposium, 2004\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Intelligent Vehicles Symposium, 2004\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2004.1336368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Intelligent Vehicles Symposium, 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2004.1336368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

燃料电池汽车和燃料电池的研究是汽车技术的一个较新的领域。本文介绍了一种利用人工神经网络减轻燃料电池汽车车载诊断任务的方法。其基本思路是一个在线学习场景,用日常驾驶数据训练动力系统模型;然后,该模型可以通过输入与固定车间试验的恒定条件相对应的预定义输入变量来估计特征曲线。通过这种方式,可以补偿在线诊断的主要障碍,即大量变化的讨厌变量。对于诊断算法来说,将得到的预测特征曲线与理想参考曲线进行比较要容易得多,而不是直接处理所有的影响因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Onboard diagnostics concept for fuel cell vehicles using adaptive modelling
Fuel cell vehicles and fuel cell research is one of the newer areas in automotive technology. This paper describes an approach that utilizes artificial neural networks to alleviate the task of onboard diagnostics for fuel cell vehicles. The basic idea is an online learning scenario that trains a power train model with every-day driving data; this model can then be used to estimate a characteristic curve by feeding it with predefined input variables corresponding to the constant conditions of a stationary workshop test. In this way, a major obstacle for on-line diagnosis, namely the multitude of varying nuisance variables, can be compensated for. For a diagnosis algorithm, it is considerably easier to compare the resulting predicted characteristic curve with an ideal reference curve, rather than to directly deal with all the influence factors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of an instrumented vehicle test bed for developing a human centered driver support system Defect detection on rail surfaces by a vision based system Probabilistic contour extraction with model-switching for vehicle localization A fuzzy ranking method for automated highway driving Fusion of range and vision for real-time motion estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1