用身体传感器网络映射组织动力学

Wen Dong, Daniel Olguín Olguín, Benjamin N. Waber, T. Kim, A. Pentland
{"title":"用身体传感器网络映射组织动力学","authors":"Wen Dong, Daniel Olguín Olguín, Benjamin N. Waber, T. Kim, A. Pentland","doi":"10.1109/BSN.2012.16","DOIUrl":null,"url":null,"abstract":"This paper demonstrates a novel approach that combines generative models of organizational dynamics and sensor network data with a stochastic method. Generative models specify how organizational performance is related to who interacts with whom and who performs what. Sensor network data track who interacts with whom and who performs what within an organization, and the stochastic methodology fits multi-agent models to data through the Monte Carlo method. The data set used in this paper documents how employees in a data service center handle tasks with different difficulty levels - tracked with sociometric badges for one month - and documents links between performance and behavior. This paper demonstrates the potential for improving organizational dynamics with body sensor network data, and therefore also shows the need to systematically benchmark differential organizational dynamics models on data sets for different types of organizations.","PeriodicalId":101720,"journal":{"name":"2012 Ninth International Conference on Wearable and Implantable Body Sensor Networks","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Mapping Organizational Dynamics with Body Sensor Networks\",\"authors\":\"Wen Dong, Daniel Olguín Olguín, Benjamin N. Waber, T. Kim, A. Pentland\",\"doi\":\"10.1109/BSN.2012.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper demonstrates a novel approach that combines generative models of organizational dynamics and sensor network data with a stochastic method. Generative models specify how organizational performance is related to who interacts with whom and who performs what. Sensor network data track who interacts with whom and who performs what within an organization, and the stochastic methodology fits multi-agent models to data through the Monte Carlo method. The data set used in this paper documents how employees in a data service center handle tasks with different difficulty levels - tracked with sociometric badges for one month - and documents links between performance and behavior. This paper demonstrates the potential for improving organizational dynamics with body sensor network data, and therefore also shows the need to systematically benchmark differential organizational dynamics models on data sets for different types of organizations.\",\"PeriodicalId\":101720,\"journal\":{\"name\":\"2012 Ninth International Conference on Wearable and Implantable Body Sensor Networks\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Ninth International Conference on Wearable and Implantable Body Sensor Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2012.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Ninth International Conference on Wearable and Implantable Body Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2012.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

本文展示了一种将组织动力学生成模型和传感器网络数据与随机方法相结合的新方法。生成模型指定组织绩效如何与谁与谁互动以及谁执行什么相关。传感器网络数据跟踪谁与谁交互以及谁在组织内执行什么,随机方法通过蒙特卡罗方法将多代理模型适合于数据。本文中使用的数据集记录了数据服务中心的员工如何处理不同难度级别的任务——用社会计量徽章跟踪一个月——并记录了绩效和行为之间的联系。本文展示了利用身体传感器网络数据改善组织动力学的潜力,因此也表明需要在不同类型组织的数据集上系统地对差异组织动力学模型进行基准测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mapping Organizational Dynamics with Body Sensor Networks
This paper demonstrates a novel approach that combines generative models of organizational dynamics and sensor network data with a stochastic method. Generative models specify how organizational performance is related to who interacts with whom and who performs what. Sensor network data track who interacts with whom and who performs what within an organization, and the stochastic methodology fits multi-agent models to data through the Monte Carlo method. The data set used in this paper documents how employees in a data service center handle tasks with different difficulty levels - tracked with sociometric badges for one month - and documents links between performance and behavior. This paper demonstrates the potential for improving organizational dynamics with body sensor network data, and therefore also shows the need to systematically benchmark differential organizational dynamics models on data sets for different types of organizations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mobile Clinical Gait Analysis Using Orient Specks Extreme Physiological State: Development of Tissue Lactate Sensor A Novel and Miniaturized 433/868MHz Multi-band Wireless Sensor Platform for Body Sensor Network Applications B²IRS: A Technique to Reduce BAN-BAN Interferences in Wireless Sensor Networks Brain-Computer Interface Signal Processing Algorithms: A Computational Cost vs. Accuracy Analysis for Wearable Computers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1