基于深度神经网络的混响时间盲估计

Myungin Lee, Joon‐Hyuk Chang
{"title":"基于深度神经网络的混响时间盲估计","authors":"Myungin Lee, Joon‐Hyuk Chang","doi":"10.1109/ICNIDC.2016.7974586","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method to estimate reverberation time (T60) from the observed reverberant speech signal using deep neural network (DNN). Reverberation of speech signal is a critical issue in speech processing as the reverberation results smearing of the sound characteristics in both temporal and spectral domain resulting unfavorable effects on the performance of speech processing algorithms. Employing room acoustic characteristics of a reverberant speech can enhance the performance of the speech processing system so that the blind estimation of reverberation time has been studied based on the numerical interpretation of reverberation. In this paper, we adopt the speech decay rate and its distribution for each frequency bin as input feature vectors of DNN. Complex relation between each input feature vector and each T60 target label through multiple nonlinear hidden layers. We also introduce an approach to mitigate the computational complexity whilst maintaining rational performance.","PeriodicalId":439987,"journal":{"name":"2016 IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Blind estimation of reverberation time using deep neural network\",\"authors\":\"Myungin Lee, Joon‐Hyuk Chang\",\"doi\":\"10.1109/ICNIDC.2016.7974586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a method to estimate reverberation time (T60) from the observed reverberant speech signal using deep neural network (DNN). Reverberation of speech signal is a critical issue in speech processing as the reverberation results smearing of the sound characteristics in both temporal and spectral domain resulting unfavorable effects on the performance of speech processing algorithms. Employing room acoustic characteristics of a reverberant speech can enhance the performance of the speech processing system so that the blind estimation of reverberation time has been studied based on the numerical interpretation of reverberation. In this paper, we adopt the speech decay rate and its distribution for each frequency bin as input feature vectors of DNN. Complex relation between each input feature vector and each T60 target label through multiple nonlinear hidden layers. We also introduce an approach to mitigate the computational complexity whilst maintaining rational performance.\",\"PeriodicalId\":439987,\"journal\":{\"name\":\"2016 IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNIDC.2016.7974586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNIDC.2016.7974586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种利用深度神经网络(DNN)从观察到的混响语音信号中估计混响时间(T60)的方法。语音信号的混响是语音处理中的一个关键问题,混响会导致声音在时域和频谱域的特征模糊,从而对语音处理算法的性能产生不利影响。利用室内混响语音的声学特性可以提高语音处理系统的性能,因此在混响数值解释的基础上研究了混响时间的盲估计。本文采用语音衰减率及其在每个频域的分布作为深度神经网络的输入特征向量。每个输入特征向量与每个T60目标标签之间通过多个非线性隐藏层的复杂关系。我们还介绍了一种方法来降低计算复杂性,同时保持合理的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Blind estimation of reverberation time using deep neural network
In this paper, we propose a method to estimate reverberation time (T60) from the observed reverberant speech signal using deep neural network (DNN). Reverberation of speech signal is a critical issue in speech processing as the reverberation results smearing of the sound characteristics in both temporal and spectral domain resulting unfavorable effects on the performance of speech processing algorithms. Employing room acoustic characteristics of a reverberant speech can enhance the performance of the speech processing system so that the blind estimation of reverberation time has been studied based on the numerical interpretation of reverberation. In this paper, we adopt the speech decay rate and its distribution for each frequency bin as input feature vectors of DNN. Complex relation between each input feature vector and each T60 target label through multiple nonlinear hidden layers. We also introduce an approach to mitigate the computational complexity whilst maintaining rational performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection-assisted interference parameter estimation and interference cancellation for LTE-Advanced system A network risk assessment methodology for power communication business An experimental study: The sufficient respiration rate detection technique via continuous wave Doppler radar Automatic calculation model of large scale soil loss model based on csle model Improved belief propagation with istinctiveness measure for stereo matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1