阿拉丁:为共享生产集群优化的最大流量管理

Heng Wu, Wen-bo Zhang, Yuanjia Xu, Hao Xiang, Tao Huang, Haiyang Ding, Zhenguo Zhang
{"title":"阿拉丁:为共享生产集群优化的最大流量管理","authors":"Heng Wu, Wen-bo Zhang, Yuanjia Xu, Hao Xiang, Tao Huang, Haiyang Ding, Zhenguo Zhang","doi":"10.1109/IPDPS.2019.00078","DOIUrl":null,"url":null,"abstract":"The rise in popularity of long-lived applications (LLAs), such as deep learning and latency-sensitive online Web services, has brought new challenges for cluster schedulers in shared production environments. Scheduling LLAs needs to support complex placement constraints (e.g., to run multiple containers of an application on different machines) and larger degrees of parallelism to provide global optimization. But existing schedulers usually suffer severe constraint violations, high latency and low resource efficiency. This paper describes Aladdin, a novel cluster scheduler that can maximize resource efficiency while avoiding constraint violations: (i) it proposes a multidimensional and nonlinear capacity function to support constraint expressions; (ii) it applies an optimized maximum flow algorithm to improve resource efficiency. Experiments with an Alibaba workload trace from a 10,000-machine cluster show that Aladdin can reduce violated constraints by as mush as 20%. Meanwhile, it improves resource efficiency by 50% compared with state-of-the-art schedulers.","PeriodicalId":403406,"journal":{"name":"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Aladdin: Optimized Maximum Flow Management for Shared Production Clusters\",\"authors\":\"Heng Wu, Wen-bo Zhang, Yuanjia Xu, Hao Xiang, Tao Huang, Haiyang Ding, Zhenguo Zhang\",\"doi\":\"10.1109/IPDPS.2019.00078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rise in popularity of long-lived applications (LLAs), such as deep learning and latency-sensitive online Web services, has brought new challenges for cluster schedulers in shared production environments. Scheduling LLAs needs to support complex placement constraints (e.g., to run multiple containers of an application on different machines) and larger degrees of parallelism to provide global optimization. But existing schedulers usually suffer severe constraint violations, high latency and low resource efficiency. This paper describes Aladdin, a novel cluster scheduler that can maximize resource efficiency while avoiding constraint violations: (i) it proposes a multidimensional and nonlinear capacity function to support constraint expressions; (ii) it applies an optimized maximum flow algorithm to improve resource efficiency. Experiments with an Alibaba workload trace from a 10,000-machine cluster show that Aladdin can reduce violated constraints by as mush as 20%. Meanwhile, it improves resource efficiency by 50% compared with state-of-the-art schedulers.\",\"PeriodicalId\":403406,\"journal\":{\"name\":\"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2019.00078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2019.00078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

深度学习和对延迟敏感的在线Web服务等长期应用程序(LLAs)的流行给共享生产环境中的集群调度器带来了新的挑战。调度LLAs需要支持复杂的放置约束(例如,在不同的机器上运行应用程序的多个容器)和更大程度的并行性,以提供全局优化。但是现有的调度器通常存在严重的约束违反、高延迟和低资源效率的问题。本文描述了一种新的集群调度器Aladdin,它可以最大限度地提高资源效率,同时避免违反约束:(i)提出了一个多维非线性容量函数来支持约束表达式;(ii)采用优化的最大流量算法,提高资源效率。对阿里巴巴1万台机器集群的工作负载跟踪实验表明,Aladdin可以将违反约束的情况减少多达20%。同时,与最先进的调度器相比,它将资源效率提高了50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aladdin: Optimized Maximum Flow Management for Shared Production Clusters
The rise in popularity of long-lived applications (LLAs), such as deep learning and latency-sensitive online Web services, has brought new challenges for cluster schedulers in shared production environments. Scheduling LLAs needs to support complex placement constraints (e.g., to run multiple containers of an application on different machines) and larger degrees of parallelism to provide global optimization. But existing schedulers usually suffer severe constraint violations, high latency and low resource efficiency. This paper describes Aladdin, a novel cluster scheduler that can maximize resource efficiency while avoiding constraint violations: (i) it proposes a multidimensional and nonlinear capacity function to support constraint expressions; (ii) it applies an optimized maximum flow algorithm to improve resource efficiency. Experiments with an Alibaba workload trace from a 10,000-machine cluster show that Aladdin can reduce violated constraints by as mush as 20%. Meanwhile, it improves resource efficiency by 50% compared with state-of-the-art schedulers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distributed Weighted All Pairs Shortest Paths Through Pipelining SAFIRE: Scalable and Accurate Fault Injection for Parallel Multithreaded Applications Architecting Racetrack Memory Preshift through Pattern-Based Prediction Mechanisms Z-Dedup:A Case for Deduplicating Compressed Contents in Cloud Dual Pattern Compression Using Data-Preprocessing for Large-Scale GPU Architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1