{"title":"通过大规模URL->文件->机器图挖掘实时检测恶意软件下载","authors":"Babak Rahbarinia, Marco Balduzzi, R. Perdisci","doi":"10.1145/2897845.2897918","DOIUrl":null,"url":null,"abstract":"In this paper we propose Mastino, a novel defense system to detect malware download events. A download event is a 3-tuple that identifies the action of downloading a file from a URL that was triggered by a client (machine). Mastino utilizes global situation awareness and continuously monitors various network- and system-level events of the clients' machines across the Internet and provides real time classification of both files and URLs to the clients upon submission of a new, unknown file or URL to the system. To enable detection of the download events, Mastino builds a large download graph that captures the subtle relationships among the entities of download events, i.e. files, URLs, and machines. We implemented a prototype version of Mastino and evaluated it in a large-scale real-world deployment. Our experimental evaluation shows that Mastino can accurately classify malware download events with an average of 95.5% true positive (TP), while incurring less than 0.5% false positives (FP). In addition, we show the Mastino can classify a new download event as either benign or malware in just a fraction of a second, and is therefore suitable as a real time defense system.","PeriodicalId":166633,"journal":{"name":"Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Real-Time Detection of Malware Downloads via Large-Scale URL->File->Machine Graph Mining\",\"authors\":\"Babak Rahbarinia, Marco Balduzzi, R. Perdisci\",\"doi\":\"10.1145/2897845.2897918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose Mastino, a novel defense system to detect malware download events. A download event is a 3-tuple that identifies the action of downloading a file from a URL that was triggered by a client (machine). Mastino utilizes global situation awareness and continuously monitors various network- and system-level events of the clients' machines across the Internet and provides real time classification of both files and URLs to the clients upon submission of a new, unknown file or URL to the system. To enable detection of the download events, Mastino builds a large download graph that captures the subtle relationships among the entities of download events, i.e. files, URLs, and machines. We implemented a prototype version of Mastino and evaluated it in a large-scale real-world deployment. Our experimental evaluation shows that Mastino can accurately classify malware download events with an average of 95.5% true positive (TP), while incurring less than 0.5% false positives (FP). In addition, we show the Mastino can classify a new download event as either benign or malware in just a fraction of a second, and is therefore suitable as a real time defense system.\",\"PeriodicalId\":166633,\"journal\":{\"name\":\"Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2897845.2897918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2897845.2897918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real-Time Detection of Malware Downloads via Large-Scale URL->File->Machine Graph Mining
In this paper we propose Mastino, a novel defense system to detect malware download events. A download event is a 3-tuple that identifies the action of downloading a file from a URL that was triggered by a client (machine). Mastino utilizes global situation awareness and continuously monitors various network- and system-level events of the clients' machines across the Internet and provides real time classification of both files and URLs to the clients upon submission of a new, unknown file or URL to the system. To enable detection of the download events, Mastino builds a large download graph that captures the subtle relationships among the entities of download events, i.e. files, URLs, and machines. We implemented a prototype version of Mastino and evaluated it in a large-scale real-world deployment. Our experimental evaluation shows that Mastino can accurately classify malware download events with an average of 95.5% true positive (TP), while incurring less than 0.5% false positives (FP). In addition, we show the Mastino can classify a new download event as either benign or malware in just a fraction of a second, and is therefore suitable as a real time defense system.