{"title":"网格形成逆变器的时间约束非锁相环主动同步","authors":"Toby Meyers, B. Mather","doi":"10.1109/TPEC51183.2021.9384915","DOIUrl":null,"url":null,"abstract":"Two major issues facing grid-forming inverters are synchronism and phase reference inaccuracies. Prior literature has addressed these problems with solutions such as disciplining the phase reference using GPS and active synchronization modes but these methods have not yet been integrated together. This paper serves to unite solutions and develop a means for an inverter to remain synchronized and grid-forming without phase reference inaccuracies through a novel time-disciplined active synchronization phase reference. Further, this work expands upon prior literature on active synchronization to include black-start capabilities. Finally, the time disciplined phase reference is evaluated in Simulink as a grid-forming inverter capable of any synchronization circumstance and assessed by key metrics from modern standards.","PeriodicalId":354018,"journal":{"name":"2021 IEEE Texas Power and Energy Conference (TPEC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Time Disciplined Non-PLL Active Synchronization for Grid Forming Inverters\",\"authors\":\"Toby Meyers, B. Mather\",\"doi\":\"10.1109/TPEC51183.2021.9384915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two major issues facing grid-forming inverters are synchronism and phase reference inaccuracies. Prior literature has addressed these problems with solutions such as disciplining the phase reference using GPS and active synchronization modes but these methods have not yet been integrated together. This paper serves to unite solutions and develop a means for an inverter to remain synchronized and grid-forming without phase reference inaccuracies through a novel time-disciplined active synchronization phase reference. Further, this work expands upon prior literature on active synchronization to include black-start capabilities. Finally, the time disciplined phase reference is evaluated in Simulink as a grid-forming inverter capable of any synchronization circumstance and assessed by key metrics from modern standards.\",\"PeriodicalId\":354018,\"journal\":{\"name\":\"2021 IEEE Texas Power and Energy Conference (TPEC)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Texas Power and Energy Conference (TPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TPEC51183.2021.9384915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Texas Power and Energy Conference (TPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPEC51183.2021.9384915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Time Disciplined Non-PLL Active Synchronization for Grid Forming Inverters
Two major issues facing grid-forming inverters are synchronism and phase reference inaccuracies. Prior literature has addressed these problems with solutions such as disciplining the phase reference using GPS and active synchronization modes but these methods have not yet been integrated together. This paper serves to unite solutions and develop a means for an inverter to remain synchronized and grid-forming without phase reference inaccuracies through a novel time-disciplined active synchronization phase reference. Further, this work expands upon prior literature on active synchronization to include black-start capabilities. Finally, the time disciplined phase reference is evaluated in Simulink as a grid-forming inverter capable of any synchronization circumstance and assessed by key metrics from modern standards.