弹性电网的快速灾难恢复:DERs与移动电源的集成

Mostafa Nazemi, P. Dehghanian, Zijiang Yang
{"title":"弹性电网的快速灾难恢复:DERs与移动电源的集成","authors":"Mostafa Nazemi, P. Dehghanian, Zijiang Yang","doi":"10.1109/PMAPS47429.2020.9183451","DOIUrl":null,"url":null,"abstract":"Despite remarkable growth in penetration of renewable energy resources in power grids, most recovery and restoration strategies cannot fully harness the potentials in such resources due to their inherent uncertainty and stochasticity. We propose a resilient disaster recovery scheme to fully unlock the flexibility of the distribution system (DS) through reconfiguration practices and efficient utilization of mobile power sources (MPS) across the system. A novel optimization framework is proposed to model the MPSs dispatch while considering a set of scenarios to capture the uncertainties in distributed energy resources in the system. The optimization model is then convexified equivalently and linearized into a mixed-integer linear programming formulation to reduce the computational complexity and achieve a global optimality. The numerical results verify a notable recovery speed and an improved power system resilience and survivability to severe extremes with devastating consequences.","PeriodicalId":126918,"journal":{"name":"2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Swift Disaster Recovery for Resilient Power Grids: Integration of DERs with Mobile Power Sources\",\"authors\":\"Mostafa Nazemi, P. Dehghanian, Zijiang Yang\",\"doi\":\"10.1109/PMAPS47429.2020.9183451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite remarkable growth in penetration of renewable energy resources in power grids, most recovery and restoration strategies cannot fully harness the potentials in such resources due to their inherent uncertainty and stochasticity. We propose a resilient disaster recovery scheme to fully unlock the flexibility of the distribution system (DS) through reconfiguration practices and efficient utilization of mobile power sources (MPS) across the system. A novel optimization framework is proposed to model the MPSs dispatch while considering a set of scenarios to capture the uncertainties in distributed energy resources in the system. The optimization model is then convexified equivalently and linearized into a mixed-integer linear programming formulation to reduce the computational complexity and achieve a global optimality. The numerical results verify a notable recovery speed and an improved power system resilience and survivability to severe extremes with devastating consequences.\",\"PeriodicalId\":126918,\"journal\":{\"name\":\"2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PMAPS47429.2020.9183451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PMAPS47429.2020.9183451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

尽管可再生能源在电网中的渗透率显著增长,但由于其固有的不确定性和随机性,大多数恢复和恢复战略不能充分利用这些资源的潜力。我们提出了一种弹性灾难恢复方案,通过重新配置实践和有效利用整个系统的移动电源(MPS)来充分释放配电系统(DS)的灵活性。提出了一种新的优化框架来建模mps调度,同时考虑了一组场景来捕捉系统中分布式能源的不确定性。然后将优化模型等效凸化并线性化为混合整数线性规划公式,以降低计算复杂度并实现全局最优性。数值结果表明,该方法能显著提高电力系统的恢复速度,提高电力系统对具有破坏性后果的极端情况的恢复能力和生存能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Swift Disaster Recovery for Resilient Power Grids: Integration of DERs with Mobile Power Sources
Despite remarkable growth in penetration of renewable energy resources in power grids, most recovery and restoration strategies cannot fully harness the potentials in such resources due to their inherent uncertainty and stochasticity. We propose a resilient disaster recovery scheme to fully unlock the flexibility of the distribution system (DS) through reconfiguration practices and efficient utilization of mobile power sources (MPS) across the system. A novel optimization framework is proposed to model the MPSs dispatch while considering a set of scenarios to capture the uncertainties in distributed energy resources in the system. The optimization model is then convexified equivalently and linearized into a mixed-integer linear programming formulation to reduce the computational complexity and achieve a global optimality. The numerical results verify a notable recovery speed and an improved power system resilience and survivability to severe extremes with devastating consequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Operating Reserve Assessment in Systems with Energy Storage and Electric Vehicles Framework and methodology for active distribution grid planning in Norway Parallel GPU Implementation for Fast Generating System Adequacy Assessment via Sequential Monte Carlo Simulation Distribution System Planning Considering Power Quality, Loadability and Economic Aspects Modelling and Simulation of Uncertainty in the Placement of Distributed Energy Resources for Planning Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1