基于雷达的微波成像算法在实验性乳房幻影中的应用比较

M. A. Elahi, B. R. Lavoie, Emily Porter, M. Olavini, E. Jones, Elise C. Fear, M. O’halloran
{"title":"基于雷达的微波成像算法在实验性乳房幻影中的应用比较","authors":"M. A. Elahi, B. R. Lavoie, Emily Porter, M. Olavini, E. Jones, Elise C. Fear, M. O’halloran","doi":"10.23919/URSIGASS.2017.8105082","DOIUrl":null,"url":null,"abstract":"Microwave imaging is a promising imaging modality for the early detection of breast cancer. The two most important signal processing components of a radar-based microwave imaging system are the early-time artifact removal and the image reconstruction algorithm. Several image reconstruction algorithms have been developed and their performance has been evaluated in a number of studies. However, most of these evaluation studies were either performed on numerical breast phantoms or used an idealized artifact removal algorithm. In this paper, a range of both data independent and data adaptive imaging algorithms are evaluated using experimental breast phantoms in combination with a realistic artifact removal algorithm. The clutter rejection capabilities of each algorithm are assessed in the presence of experimental noise and residual artifacts using a range of appropriate image quality metrics.","PeriodicalId":377869,"journal":{"name":"2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Comparison of radar-based microwave imaging algorithms applied to experimental breast phantoms\",\"authors\":\"M. A. Elahi, B. R. Lavoie, Emily Porter, M. Olavini, E. Jones, Elise C. Fear, M. O’halloran\",\"doi\":\"10.23919/URSIGASS.2017.8105082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microwave imaging is a promising imaging modality for the early detection of breast cancer. The two most important signal processing components of a radar-based microwave imaging system are the early-time artifact removal and the image reconstruction algorithm. Several image reconstruction algorithms have been developed and their performance has been evaluated in a number of studies. However, most of these evaluation studies were either performed on numerical breast phantoms or used an idealized artifact removal algorithm. In this paper, a range of both data independent and data adaptive imaging algorithms are evaluated using experimental breast phantoms in combination with a realistic artifact removal algorithm. The clutter rejection capabilities of each algorithm are assessed in the presence of experimental noise and residual artifacts using a range of appropriate image quality metrics.\",\"PeriodicalId\":377869,\"journal\":{\"name\":\"2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/URSIGASS.2017.8105082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/URSIGASS.2017.8105082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

微波成像是早期发现乳腺癌的一种很有前途的成像方式。在基于雷达的微波成像系统中,早期伪影去除和图像重建算法是两个最重要的信号处理组成部分。已经开发了几种图像重建算法,并在许多研究中对其性能进行了评估。然而,这些评估研究大多是在数字乳房幻影上进行的,或者使用理想的伪影去除算法。在本文中,一系列数据独立和数据自适应成像算法被评估使用实验乳房幻影结合现实的伪影去除算法。在实验噪声和残余伪影存在的情况下,使用一系列适当的图像质量指标来评估每种算法的杂波抑制能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of radar-based microwave imaging algorithms applied to experimental breast phantoms
Microwave imaging is a promising imaging modality for the early detection of breast cancer. The two most important signal processing components of a radar-based microwave imaging system are the early-time artifact removal and the image reconstruction algorithm. Several image reconstruction algorithms have been developed and their performance has been evaluated in a number of studies. However, most of these evaluation studies were either performed on numerical breast phantoms or used an idealized artifact removal algorithm. In this paper, a range of both data independent and data adaptive imaging algorithms are evaluated using experimental breast phantoms in combination with a realistic artifact removal algorithm. The clutter rejection capabilities of each algorithm are assessed in the presence of experimental noise and residual artifacts using a range of appropriate image quality metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visible light communication based on offset pulse position modulation (Offset-PPM) using high power LED Measurement, simulation and optimization of wideband log-periodic antennas Time-frequency diversity measurements in power systems Diagnostic potential of free-space radiometric partial discharge measurements Low power embedded processing of scintillation events with silicon photo multipliers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1