{"title":"模块化软件系统测试资源的优化分配","authors":"Chin-Yu Huang, J. Lo, S. Kuo, Michael R. Lyu","doi":"10.1109/ISSRE.2002.1173228","DOIUrl":null,"url":null,"abstract":"In this paper, based on software reliability growth models with generalized logistic testing-effort function, we study three optimal resource allocation problems in modular software systems during the testing phase: 1) minimization of the remaining faults when a fixed amount of testing-effort and a desired reliability objective are given; 2) minimization of the required amount of testing-effort when a specific number of remaining faults and a desired reliability objective are given; and 3) minimization of the cost when the number of remaining faults and a desired reliability objective are given. Several useful optimization algorithms based on the Lagrange multiplier method are proposed and numerical examples are illustrated. Our methodologies provide practical approaches to the optimization of testing-resource allocation with a reliability objective. In addition, we also introduce the testing-resource control problem and compare different resource allocation methods. Finally, we demonstrate how these analytical approaches can be employed in the integration testing. Using the proposed algorithms, project managers can allocate limited testing-resource easily and efficiently and thus achieve the highest reliability objective during software module and integration testing.","PeriodicalId":159160,"journal":{"name":"13th International Symposium on Software Reliability Engineering, 2002. Proceedings.","volume":"453-454 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Optimal allocation of testing resources for modular software systems\",\"authors\":\"Chin-Yu Huang, J. Lo, S. Kuo, Michael R. Lyu\",\"doi\":\"10.1109/ISSRE.2002.1173228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, based on software reliability growth models with generalized logistic testing-effort function, we study three optimal resource allocation problems in modular software systems during the testing phase: 1) minimization of the remaining faults when a fixed amount of testing-effort and a desired reliability objective are given; 2) minimization of the required amount of testing-effort when a specific number of remaining faults and a desired reliability objective are given; and 3) minimization of the cost when the number of remaining faults and a desired reliability objective are given. Several useful optimization algorithms based on the Lagrange multiplier method are proposed and numerical examples are illustrated. Our methodologies provide practical approaches to the optimization of testing-resource allocation with a reliability objective. In addition, we also introduce the testing-resource control problem and compare different resource allocation methods. Finally, we demonstrate how these analytical approaches can be employed in the integration testing. Using the proposed algorithms, project managers can allocate limited testing-resource easily and efficiently and thus achieve the highest reliability objective during software module and integration testing.\",\"PeriodicalId\":159160,\"journal\":{\"name\":\"13th International Symposium on Software Reliability Engineering, 2002. Proceedings.\",\"volume\":\"453-454 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"13th International Symposium on Software Reliability Engineering, 2002. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSRE.2002.1173228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"13th International Symposium on Software Reliability Engineering, 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSRE.2002.1173228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal allocation of testing resources for modular software systems
In this paper, based on software reliability growth models with generalized logistic testing-effort function, we study three optimal resource allocation problems in modular software systems during the testing phase: 1) minimization of the remaining faults when a fixed amount of testing-effort and a desired reliability objective are given; 2) minimization of the required amount of testing-effort when a specific number of remaining faults and a desired reliability objective are given; and 3) minimization of the cost when the number of remaining faults and a desired reliability objective are given. Several useful optimization algorithms based on the Lagrange multiplier method are proposed and numerical examples are illustrated. Our methodologies provide practical approaches to the optimization of testing-resource allocation with a reliability objective. In addition, we also introduce the testing-resource control problem and compare different resource allocation methods. Finally, we demonstrate how these analytical approaches can be employed in the integration testing. Using the proposed algorithms, project managers can allocate limited testing-resource easily and efficiently and thus achieve the highest reliability objective during software module and integration testing.