基于拉普拉斯先验的分布式压缩感知

Liang Tang, Zheng Zhou, Lei Shi, Haipeng Yao, J. Zhang, Y. Ye
{"title":"基于拉普拉斯先验的分布式压缩感知","authors":"Liang Tang, Zheng Zhou, Lei Shi, Haipeng Yao, J. Zhang, Y. Ye","doi":"10.4108/CHINACOM.2010.82","DOIUrl":null,"url":null,"abstract":"Bayesian compressive sensing (BCS) utilizes the prior distribution of signal coefficients to reconstruct the original signal. The widely used prior is Laplace and Gaussian distributed. In this paper, we use the scene of L sets of signal sparse coefficients which are statistically related and take advantage of Laplace prior and statistically interrelationship among signals to propose the Laplace prior based distributed Bayesian compressive sensing. We provide the experiment result to demonstrating that the proposed method is an effective reconstruction algorithm and has a good performance.","PeriodicalId":422191,"journal":{"name":"2010 5th International ICST Conference on Communications and Networking in China","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Laplace prior based distributed compressive sensing\",\"authors\":\"Liang Tang, Zheng Zhou, Lei Shi, Haipeng Yao, J. Zhang, Y. Ye\",\"doi\":\"10.4108/CHINACOM.2010.82\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bayesian compressive sensing (BCS) utilizes the prior distribution of signal coefficients to reconstruct the original signal. The widely used prior is Laplace and Gaussian distributed. In this paper, we use the scene of L sets of signal sparse coefficients which are statistically related and take advantage of Laplace prior and statistically interrelationship among signals to propose the Laplace prior based distributed Bayesian compressive sensing. We provide the experiment result to demonstrating that the proposed method is an effective reconstruction algorithm and has a good performance.\",\"PeriodicalId\":422191,\"journal\":{\"name\":\"2010 5th International ICST Conference on Communications and Networking in China\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 5th International ICST Conference on Communications and Networking in China\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/CHINACOM.2010.82\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 5th International ICST Conference on Communications and Networking in China","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/CHINACOM.2010.82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

贝叶斯压缩感知(BCS)利用信号系数的先验分布重构原始信号。广泛使用的先验是拉普拉斯分布和高斯分布。本文利用L组具有统计相关性的信号稀疏系数的场景,利用信号之间的拉普拉斯先验和统计相互关系,提出了基于拉普拉斯先验的分布式贝叶斯压缩感知。实验结果表明,该方法是一种有效的重构算法,具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Laplace prior based distributed compressive sensing
Bayesian compressive sensing (BCS) utilizes the prior distribution of signal coefficients to reconstruct the original signal. The widely used prior is Laplace and Gaussian distributed. In this paper, we use the scene of L sets of signal sparse coefficients which are statistically related and take advantage of Laplace prior and statistically interrelationship among signals to propose the Laplace prior based distributed Bayesian compressive sensing. We provide the experiment result to demonstrating that the proposed method is an effective reconstruction algorithm and has a good performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Adaptive QoS mechanism for multimedia applications over next generation vehicular network Improving performance of MPEG-based stream by SCTP multi-streaming mechanism A mobicast routing protocol with carry-and-forward in vehicular ad-hoc networks Application of cyclostationarity to joint signal detection, classification, and blind parameter estimation The capacity region of a product Gaussian broadcast channel with degraded message sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1