短脉冲激光与物质相互作用实验的e-PLAS分析

R. Mason, M. Wei, F. Beg, R. Stephens, C. Snell
{"title":"短脉冲激光与物质相互作用实验的e-PLAS分析","authors":"R. Mason, M. Wei, F. Beg, R. Stephens, C. Snell","doi":"10.1109/PPPS.2007.4346127","DOIUrl":null,"url":null,"abstract":"The transport of relativistic electrons<sup>1</sup> generated in wire and foil targets by short-pulse lasers is examined with the new e-PLAS simulation code based on implicit-moment/hybrid<sup>2</sup> techniques. In a 50 μm diameter Cu wire (Z<inf>eff</inf> = 15) as recently illuminated on the TITAN LLNL laser, for example, a 1.7×10<sup>20</sup> W/cm<sup>2</sup> simulated laser beam delivering a flat 30 μm spot from the left (with 40 % absorption) generates the hot electron density profile depicted below at 940 fs. The peak hot density in the laser spot is ∼3×10<sup>21</sup> electrons/cm<sup>3</sup>. This density drops to 3x10<sup>19</sup> electrons/cm<sup>3</sup> 200 microns into the wire. A peak temperature of 2 keV is achieved through Joule heating of the background electrons in the wire “head” near the deposition surface; a significantly lower ∼0.4 keV is achieved in the wire body. Here, 300 MG thermoelectric B-fields are also calculated. Parameter studies relate the hot electron stopping to the surface B-field, modest drag slowing, and the background cold electron resisitvity, which is bleached by background heating to low values at late times.","PeriodicalId":275106,"journal":{"name":"2007 16th IEEE International Pulsed Power Conference","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"e-PLAS analysis of short pulse laser-matter interaction experiments\",\"authors\":\"R. Mason, M. Wei, F. Beg, R. Stephens, C. Snell\",\"doi\":\"10.1109/PPPS.2007.4346127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The transport of relativistic electrons<sup>1</sup> generated in wire and foil targets by short-pulse lasers is examined with the new e-PLAS simulation code based on implicit-moment/hybrid<sup>2</sup> techniques. In a 50 μm diameter Cu wire (Z<inf>eff</inf> = 15) as recently illuminated on the TITAN LLNL laser, for example, a 1.7×10<sup>20</sup> W/cm<sup>2</sup> simulated laser beam delivering a flat 30 μm spot from the left (with 40 % absorption) generates the hot electron density profile depicted below at 940 fs. The peak hot density in the laser spot is ∼3×10<sup>21</sup> electrons/cm<sup>3</sup>. This density drops to 3x10<sup>19</sup> electrons/cm<sup>3</sup> 200 microns into the wire. A peak temperature of 2 keV is achieved through Joule heating of the background electrons in the wire “head” near the deposition surface; a significantly lower ∼0.4 keV is achieved in the wire body. Here, 300 MG thermoelectric B-fields are also calculated. Parameter studies relate the hot electron stopping to the surface B-field, modest drag slowing, and the background cold electron resisitvity, which is bleached by background heating to low values at late times.\",\"PeriodicalId\":275106,\"journal\":{\"name\":\"2007 16th IEEE International Pulsed Power Conference\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 16th IEEE International Pulsed Power Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PPPS.2007.4346127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 16th IEEE International Pulsed Power Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPPS.2007.4346127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用基于隐式力矩/混合技术的新型e-PLAS仿真程序,研究了短脉冲激光在导线和箔靶中产生的相对论性电子输运。例如,最近在TITAN LLNL激光器上照射的直径为50 μm的铜线(Zeff = 15)中,1.7×1020 W/cm2的模拟激光束从左侧提供一个平坦的30 μm光斑(吸收率为40%),在940 fs时产生如下所示的热电子密度曲线。激光光斑的峰值热密度为~ 3×1021电子/cm3。这个密度下降到3 × 1019个电子/cm3进入200微米的电线。通过对靠近沉积表面的线“头”中的背景电子进行焦耳加热,达到2 keV的峰值温度;在线体中实现了明显更低的~ 0.4 keV。这里还计算了300mg热电b场。参数研究将热电子停止与表面b场、适度的阻力减慢和背景冷电子电阻率联系起来,背景冷电子电阻率在后期被背景加热漂白至低值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
e-PLAS analysis of short pulse laser-matter interaction experiments
The transport of relativistic electrons1 generated in wire and foil targets by short-pulse lasers is examined with the new e-PLAS simulation code based on implicit-moment/hybrid2 techniques. In a 50 μm diameter Cu wire (Zeff = 15) as recently illuminated on the TITAN LLNL laser, for example, a 1.7×1020 W/cm2 simulated laser beam delivering a flat 30 μm spot from the left (with 40 % absorption) generates the hot electron density profile depicted below at 940 fs. The peak hot density in the laser spot is ∼3×1021 electrons/cm3. This density drops to 3x1019 electrons/cm3 200 microns into the wire. A peak temperature of 2 keV is achieved through Joule heating of the background electrons in the wire “head” near the deposition surface; a significantly lower ∼0.4 keV is achieved in the wire body. Here, 300 MG thermoelectric B-fields are also calculated. Parameter studies relate the hot electron stopping to the surface B-field, modest drag slowing, and the background cold electron resisitvity, which is bleached by background heating to low values at late times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dissipative instability under weak beam-plasma coupling Inductive heating of materials for the study of high-temperature mechanical properties. Application of a self-breakdown hydrogen spark gap switch on high power pulse modulator Discharge current and current of supershort avalanche E-beam at volume nanosecond discharge in non-uniform electric field Vertical dust particle chains - mass and charge measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1