利用社交媒体简化医学文本

Nikhil Pattisapu, Nishant Prabhu, Smriti Bhati, Vasudeva Varma
{"title":"利用社交媒体简化医学文本","authors":"Nikhil Pattisapu, Nishant Prabhu, Smriti Bhati, Vasudeva Varma","doi":"10.1145/3397271.3401105","DOIUrl":null,"url":null,"abstract":"Patients are increasingly using the web for understanding medical information, making health decisions, and validating physicians' advice. However, most of this content is tailored to an expert audience, due to which people with inadequate health literacy often find it difficult to access, comprehend, and act upon this information. Medical text simplification aims to alleviate this problem by computationally simplifying medical text. Most text simplification methods employ neural seq-to-seq models for this task. However, training such models requires a corpus of aligned complex and simple sentences. Creating such a dataset manually is effort intensive, while creating it automatically is prone to alignment errors. To overcome these challenges, we propose a denoising autoencoder based neural model for this task which leverages the simplistic writing style of medical social media text. Experiments on four datasets show that our method significantly outperforms the best known medical text simplification models across multiple automated and human evaluation metrics. Our model achieves an improvement of up to 16.52% over the existing best performing model on SARI which is the primary metric to evaluate text simplification models.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Leveraging Social Media for Medical Text Simplification\",\"authors\":\"Nikhil Pattisapu, Nishant Prabhu, Smriti Bhati, Vasudeva Varma\",\"doi\":\"10.1145/3397271.3401105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Patients are increasingly using the web for understanding medical information, making health decisions, and validating physicians' advice. However, most of this content is tailored to an expert audience, due to which people with inadequate health literacy often find it difficult to access, comprehend, and act upon this information. Medical text simplification aims to alleviate this problem by computationally simplifying medical text. Most text simplification methods employ neural seq-to-seq models for this task. However, training such models requires a corpus of aligned complex and simple sentences. Creating such a dataset manually is effort intensive, while creating it automatically is prone to alignment errors. To overcome these challenges, we propose a denoising autoencoder based neural model for this task which leverages the simplistic writing style of medical social media text. Experiments on four datasets show that our method significantly outperforms the best known medical text simplification models across multiple automated and human evaluation metrics. Our model achieves an improvement of up to 16.52% over the existing best performing model on SARI which is the primary metric to evaluate text simplification models.\",\"PeriodicalId\":252050,\"journal\":{\"name\":\"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397271.3401105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397271.3401105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

患者越来越多地使用网络来了解医疗信息,做出健康决定,并验证医生的建议。然而,这些内容大多是为专业受众量身定制的,因此卫生知识不足的人往往难以获取、理解和根据这些信息采取行动。医学文本简化旨在通过计算简化医学文本来缓解这一问题。大多数文本简化方法使用神经序列到序列模型来完成这项任务。然而,训练这样的模型需要一个复杂和简单句子对齐的语料库。手动创建这样的数据集非常费力,而自动创建则容易出现对齐错误。为了克服这些挑战,我们提出了一种基于去噪自编码器的神经模型,该模型利用了医学社交媒体文本的简单写作风格。在四个数据集上的实验表明,我们的方法在多个自动化和人工评估指标上显著优于最知名的医学文本简化模型。我们的模型在SARI上比现有的最佳模型提高了16.52%,SARI是评估文本简化模型的主要指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leveraging Social Media for Medical Text Simplification
Patients are increasingly using the web for understanding medical information, making health decisions, and validating physicians' advice. However, most of this content is tailored to an expert audience, due to which people with inadequate health literacy often find it difficult to access, comprehend, and act upon this information. Medical text simplification aims to alleviate this problem by computationally simplifying medical text. Most text simplification methods employ neural seq-to-seq models for this task. However, training such models requires a corpus of aligned complex and simple sentences. Creating such a dataset manually is effort intensive, while creating it automatically is prone to alignment errors. To overcome these challenges, we propose a denoising autoencoder based neural model for this task which leverages the simplistic writing style of medical social media text. Experiments on four datasets show that our method significantly outperforms the best known medical text simplification models across multiple automated and human evaluation metrics. Our model achieves an improvement of up to 16.52% over the existing best performing model on SARI which is the primary metric to evaluate text simplification models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MHM: Multi-modal Clinical Data based Hierarchical Multi-label Diagnosis Prediction Correlated Features Synthesis and Alignment for Zero-shot Cross-modal Retrieval DVGAN Models Versus Satisfaction: Towards a Better Understanding of Evaluation Metrics Global Context Enhanced Graph Neural Networks for Session-based Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1