基于DCT表示的语义分割研究

Shao-Yuan Lo, H. Hang
{"title":"基于DCT表示的语义分割研究","authors":"Shao-Yuan Lo, H. Hang","doi":"10.1145/3338533.3366557","DOIUrl":null,"url":null,"abstract":"Typical convolutional networks are trained and conducted on RGB images. However, images are often compressed for memory savings and efficient transmission in real-world applications. In this paper, we explore methods for performing semantic segmentation on the discrete cosine transform (DCT) representation defined by the JPEG standard. We first rearrange the DCT coefficients to form a preferred input type, then we tailor an existing network to the DCT inputs. The proposed method has an accuracy close to the RGB model at about the same network complexity. Moreover, we investigate the impact of selecting different DCT components on segmentation performance. With a proper selection, one can achieve the same level accuracy using only 36% of the DCT coefficients. We further show the robustness of our method under the quantization errors. To our knowledge, this paper is the first to explore semantic segmentation on the DCT representation.","PeriodicalId":273086,"journal":{"name":"Proceedings of the ACM Multimedia Asia","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Exploring Semantic Segmentation on the DCT Representation\",\"authors\":\"Shao-Yuan Lo, H. Hang\",\"doi\":\"10.1145/3338533.3366557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Typical convolutional networks are trained and conducted on RGB images. However, images are often compressed for memory savings and efficient transmission in real-world applications. In this paper, we explore methods for performing semantic segmentation on the discrete cosine transform (DCT) representation defined by the JPEG standard. We first rearrange the DCT coefficients to form a preferred input type, then we tailor an existing network to the DCT inputs. The proposed method has an accuracy close to the RGB model at about the same network complexity. Moreover, we investigate the impact of selecting different DCT components on segmentation performance. With a proper selection, one can achieve the same level accuracy using only 36% of the DCT coefficients. We further show the robustness of our method under the quantization errors. To our knowledge, this paper is the first to explore semantic segmentation on the DCT representation.\",\"PeriodicalId\":273086,\"journal\":{\"name\":\"Proceedings of the ACM Multimedia Asia\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Multimedia Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3338533.3366557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3338533.3366557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

典型的卷积网络是在RGB图像上训练和执行的。但是,在实际应用程序中,为了节省内存和有效传输,通常会压缩图像。在本文中,我们探索了在JPEG标准定义的离散余弦变换(DCT)表示上执行语义分割的方法。我们首先重新排列DCT系数以形成首选输入类型,然后根据DCT输入定制现有网络。在相同的网络复杂度下,该方法具有接近RGB模型的精度。此外,我们还研究了选择不同的DCT分量对分割性能的影响。通过适当的选择,仅使用36%的DCT系数就可以达到相同水平的精度。进一步证明了该方法在量化误差下的鲁棒性。据我们所知,本文是第一个在DCT表示上探索语义分割的论文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring Semantic Segmentation on the DCT Representation
Typical convolutional networks are trained and conducted on RGB images. However, images are often compressed for memory savings and efficient transmission in real-world applications. In this paper, we explore methods for performing semantic segmentation on the discrete cosine transform (DCT) representation defined by the JPEG standard. We first rearrange the DCT coefficients to form a preferred input type, then we tailor an existing network to the DCT inputs. The proposed method has an accuracy close to the RGB model at about the same network complexity. Moreover, we investigate the impact of selecting different DCT components on segmentation performance. With a proper selection, one can achieve the same level accuracy using only 36% of the DCT coefficients. We further show the robustness of our method under the quantization errors. To our knowledge, this paper is the first to explore semantic segmentation on the DCT representation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Session details: Vision in Multimedia Domain Specific and Idiom Adaptive Video Summarization Multi-Label Image Classification with Attention Mechanism and Graph Convolutional Networks Session details: Brave New Idea Self-balance Motion and Appearance Model for Multi-object Tracking in UAV
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1