{"title":"使用共享分类器的低铅心电图自动诊断","authors":"H. Jessen, R. V. D. Leur, P. Doevendans, R. V. Es","doi":"10.23919/cinc53138.2021.9662872","DOIUrl":null,"url":null,"abstract":"Portable ECG devices with a reduced number of leads are increasingly being used in clinical practice. As part of the PhysioNet/Computing in Cardiology Challenge 2021, this study aims to develop an algorithm for automated diagnosis of reduced-lead ECGs. We compared separate baseline classifiers for the different lead-subsets with our newly proposed shared classifier. The different models were pre-trained on a physician-annotated dataset of 269,72612-lead ECGs. Fine-tuning was done on the challenge dataset, consisting of 88,243 ECGs. Even though different models showed promising results on the internal pre-training dataset, optimal scores were achieved by the baseline model on the hidden test set. Our team, UMCU, received scores of 0.47, 0.40, 0.41, 0.41, and 0.41 (ranked 14th, 17th, 17th, 17th, and 16th out of 39 teams) for the 12-lead, 6-lead, 4-lead, 3-lead, and 2-lead versions of the hidden test set.","PeriodicalId":126746,"journal":{"name":"2021 Computing in Cardiology (CinC)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automated Diagnosis of Reduced-Lead Electrocardiograms Using a Shared Classifier\",\"authors\":\"H. Jessen, R. V. D. Leur, P. Doevendans, R. V. Es\",\"doi\":\"10.23919/cinc53138.2021.9662872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Portable ECG devices with a reduced number of leads are increasingly being used in clinical practice. As part of the PhysioNet/Computing in Cardiology Challenge 2021, this study aims to develop an algorithm for automated diagnosis of reduced-lead ECGs. We compared separate baseline classifiers for the different lead-subsets with our newly proposed shared classifier. The different models were pre-trained on a physician-annotated dataset of 269,72612-lead ECGs. Fine-tuning was done on the challenge dataset, consisting of 88,243 ECGs. Even though different models showed promising results on the internal pre-training dataset, optimal scores were achieved by the baseline model on the hidden test set. Our team, UMCU, received scores of 0.47, 0.40, 0.41, 0.41, and 0.41 (ranked 14th, 17th, 17th, 17th, and 16th out of 39 teams) for the 12-lead, 6-lead, 4-lead, 3-lead, and 2-lead versions of the hidden test set.\",\"PeriodicalId\":126746,\"journal\":{\"name\":\"2021 Computing in Cardiology (CinC)\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/cinc53138.2021.9662872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/cinc53138.2021.9662872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
减少导联数量的便携式心电设备越来越多地用于临床实践。作为PhysioNet/Computing in Cardiology Challenge 2021的一部分,该研究旨在开发一种自动诊断低导联心电图的算法。我们将不同铅子集的单独基线分类器与我们新提出的共享分类器进行了比较。不同的模型在医生注释的269,72612导联心电图数据集上进行预训练。对挑战数据集进行了微调,该数据集由88,243个心电图组成。尽管不同的模型在内部预训练数据集上显示出很好的结果,但基线模型在隐藏测试集上获得了最优分数。我们的UMCU团队在12-lead, 6-lead, 4-lead, 3-lead和2-lead版本的隐藏测试集中获得了0.47,0.40,0.41,0.41和0.41的分数(在39个团队中排名第14,17,17,17和16)。
Automated Diagnosis of Reduced-Lead Electrocardiograms Using a Shared Classifier
Portable ECG devices with a reduced number of leads are increasingly being used in clinical practice. As part of the PhysioNet/Computing in Cardiology Challenge 2021, this study aims to develop an algorithm for automated diagnosis of reduced-lead ECGs. We compared separate baseline classifiers for the different lead-subsets with our newly proposed shared classifier. The different models were pre-trained on a physician-annotated dataset of 269,72612-lead ECGs. Fine-tuning was done on the challenge dataset, consisting of 88,243 ECGs. Even though different models showed promising results on the internal pre-training dataset, optimal scores were achieved by the baseline model on the hidden test set. Our team, UMCU, received scores of 0.47, 0.40, 0.41, 0.41, and 0.41 (ranked 14th, 17th, 17th, 17th, and 16th out of 39 teams) for the 12-lead, 6-lead, 4-lead, 3-lead, and 2-lead versions of the hidden test set.