具有不同持续时间的健壮的COA计划

Luohao Tang, Cheng Zhu, Weiming Zhang, Zhong Liu
{"title":"具有不同持续时间的健壮的COA计划","authors":"Luohao Tang, Cheng Zhu, Weiming Zhang, Zhong Liu","doi":"10.1109/CCIS.2011.6045104","DOIUrl":null,"url":null,"abstract":"COA (Course of Action) planning involves resource allocation and task scheduling. Traditionally, this problem is tackled with the assumption that task duration is constant and with the objective to minimize the makespan. In contrast to this, this paper assumes task duration can vary in a time interval and the objective is to maximize the RM (Robustness Measure) given the deadline, which makes sense to deal with the duration uncertainty. A COA planning method based on GA (Genetic Algorithm) and STN (Simple Temporal Network) is proposed and a COA planning instance is presented to illustrate the usefulness of this method.","PeriodicalId":128504,"journal":{"name":"2011 IEEE International Conference on Cloud Computing and Intelligence Systems","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Robust COA planning with varying durations\",\"authors\":\"Luohao Tang, Cheng Zhu, Weiming Zhang, Zhong Liu\",\"doi\":\"10.1109/CCIS.2011.6045104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"COA (Course of Action) planning involves resource allocation and task scheduling. Traditionally, this problem is tackled with the assumption that task duration is constant and with the objective to minimize the makespan. In contrast to this, this paper assumes task duration can vary in a time interval and the objective is to maximize the RM (Robustness Measure) given the deadline, which makes sense to deal with the duration uncertainty. A COA planning method based on GA (Genetic Algorithm) and STN (Simple Temporal Network) is proposed and a COA planning instance is presented to illustrate the usefulness of this method.\",\"PeriodicalId\":128504,\"journal\":{\"name\":\"2011 IEEE International Conference on Cloud Computing and Intelligence Systems\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Cloud Computing and Intelligence Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCIS.2011.6045104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Cloud Computing and Intelligence Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIS.2011.6045104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

COA(行动过程)计划包括资源分配和任务调度。传统上,解决这个问题的假设是任务持续时间是恒定的,目标是最小化完工时间。与此相反,本文假设任务持续时间可以在一个时间间隔内变化,目标是在给定截止日期的情况下最大化RM(鲁棒性度量),这对处理持续时间的不确定性是有意义的。提出了一种基于遗传算法(GA)和简单时态网络(STN)的COA规划方法,并通过实例说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust COA planning with varying durations
COA (Course of Action) planning involves resource allocation and task scheduling. Traditionally, this problem is tackled with the assumption that task duration is constant and with the objective to minimize the makespan. In contrast to this, this paper assumes task duration can vary in a time interval and the objective is to maximize the RM (Robustness Measure) given the deadline, which makes sense to deal with the duration uncertainty. A COA planning method based on GA (Genetic Algorithm) and STN (Simple Temporal Network) is proposed and a COA planning instance is presented to illustrate the usefulness of this method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A dynamic and integrated load-balancing scheduling algorithm for Cloud datacenters A CPU-GPU hybrid computing framework for real-time clothing animation The communication of CAN bus used in synchronization control of multi-motor based on DSP An improved dynamic provable data possession model Ensuring the data integrity in cloud data storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1