通过过滤、特征工程和增强将设备连接到cookie

M. Kim, Jiwei Liu, Xiaozhou Wang, Wei Yang
{"title":"通过过滤、特征工程和增强将设备连接到cookie","authors":"M. Kim, Jiwei Liu, Xiaozhou Wang, Wei Yang","doi":"10.1109/ICDMW.2015.236","DOIUrl":null,"url":null,"abstract":"We present a supervised machine learning system capable of matching internet devices to web cookies through filtering, feature engineering, binary classification, and post processing. The system builds a reasonably sized training and testing data set through filtering and feature engineering. We build 415 features in total. Some of these features were engineered to be O(n) time, stand alone classifiers for this problem. Other features use various natural language processing (NLP) techniques. Meta features are created by ridge regression and Adaboost. Then binary classification through two different gradient boosting (XGBoost with logarithmic loss) models is performed. A post processing pipeline connects devices and cookies in a way that maximizes F_0.5 score. Our machine learning system obtained a private F_0.5 score of 0.849562 for a final rank of 12th/340 on the ICDM 2015: Drawbridge Cross-Device Connections challenge.","PeriodicalId":192888,"journal":{"name":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Connecting Devices to Cookies via Filtering, Feature Engineering, and Boosting\",\"authors\":\"M. Kim, Jiwei Liu, Xiaozhou Wang, Wei Yang\",\"doi\":\"10.1109/ICDMW.2015.236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a supervised machine learning system capable of matching internet devices to web cookies through filtering, feature engineering, binary classification, and post processing. The system builds a reasonably sized training and testing data set through filtering and feature engineering. We build 415 features in total. Some of these features were engineered to be O(n) time, stand alone classifiers for this problem. Other features use various natural language processing (NLP) techniques. Meta features are created by ridge regression and Adaboost. Then binary classification through two different gradient boosting (XGBoost with logarithmic loss) models is performed. A post processing pipeline connects devices and cookies in a way that maximizes F_0.5 score. Our machine learning system obtained a private F_0.5 score of 0.849562 for a final rank of 12th/340 on the ICDM 2015: Drawbridge Cross-Device Connections challenge.\",\"PeriodicalId\":192888,\"journal\":{\"name\":\"2015 IEEE International Conference on Data Mining Workshop (ICDMW)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Data Mining Workshop (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2015.236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2015.236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

我们提出了一个有监督的机器学习系统,能够通过过滤、特征工程、二进制分类和后处理将互联网设备与web cookie匹配。该系统通过过滤和特征工程构建了一个合理规模的训练和测试数据集。我们总共构建了415个特性。其中一些特征被设计成O(n)时间的独立分类器来解决这个问题。其他功能使用各种自然语言处理(NLP)技术。元特征由脊回归和Adaboost创建。然后通过两种不同的梯度增强模型(带对数损失的XGBoost)进行二值分类。后处理管道以一种最大化F_0.5分数的方式连接设备和cookie。我们的机器学习系统在ICDM 2015:吊桥跨设备连接挑战中获得了私人F_0.5分数0.849562,最终排名第12 /340。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Connecting Devices to Cookies via Filtering, Feature Engineering, and Boosting
We present a supervised machine learning system capable of matching internet devices to web cookies through filtering, feature engineering, binary classification, and post processing. The system builds a reasonably sized training and testing data set through filtering and feature engineering. We build 415 features in total. Some of these features were engineered to be O(n) time, stand alone classifiers for this problem. Other features use various natural language processing (NLP) techniques. Meta features are created by ridge regression and Adaboost. Then binary classification through two different gradient boosting (XGBoost with logarithmic loss) models is performed. A post processing pipeline connects devices and cookies in a way that maximizes F_0.5 score. Our machine learning system obtained a private F_0.5 score of 0.849562 for a final rank of 12th/340 on the ICDM 2015: Drawbridge Cross-Device Connections challenge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large-Scale Linear Support Vector Ordinal Regression Solver Joint Recovery and Representation Learning for Robust Correlation Estimation Based on Partially Observed Data Accurate Classification of Biological Data Using Ensembles Large-Scale Unusual Time Series Detection Sentiment Polarity Classification Using Structural Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1