基于超轻量化子空间注意模块的模拟电路故障识别

A. Zhang, Xinglong Yu, Yang Zhang
{"title":"基于超轻量化子空间注意模块的模拟电路故障识别","authors":"A. Zhang, Xinglong Yu, Yang Zhang","doi":"10.1109/INDIN45523.2021.9557489","DOIUrl":null,"url":null,"abstract":"In order to improve the classification accuracy of analog circuit failure modes, this paper proposes an ultra-lightweight subspace attention module (ULSAM) classification method, which combines lightweight (reducing parameters) with attention mechanism to improve convolutional neural networks (CNN) feature extraction and classification performance. This article uses depthwise separable (DWS) convolution, by decomposing the standard convolution into depthwise convolution (feature extraction) and pointwise convolution (feature aggregation). Meanwhile, the attention mechanism is applied, only one 1×1 filter is used after depthwise convolution, which can compute efficient interaction of cross-channel information, and uses the linear relationship between feature maps to avoid the use of multi-layer perceptron (MLP). The application of the failure modes of analog circuits shows that the proposed ULSAM method can realize the pattern classification of analog circuit faults more quickly and accurately.","PeriodicalId":370921,"journal":{"name":"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault Recognition of Analog Circuits Based on Ultra-Lightweight Subspace Attention Module\",\"authors\":\"A. Zhang, Xinglong Yu, Yang Zhang\",\"doi\":\"10.1109/INDIN45523.2021.9557489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the classification accuracy of analog circuit failure modes, this paper proposes an ultra-lightweight subspace attention module (ULSAM) classification method, which combines lightweight (reducing parameters) with attention mechanism to improve convolutional neural networks (CNN) feature extraction and classification performance. This article uses depthwise separable (DWS) convolution, by decomposing the standard convolution into depthwise convolution (feature extraction) and pointwise convolution (feature aggregation). Meanwhile, the attention mechanism is applied, only one 1×1 filter is used after depthwise convolution, which can compute efficient interaction of cross-channel information, and uses the linear relationship between feature maps to avoid the use of multi-layer perceptron (MLP). The application of the failure modes of analog circuits shows that the proposed ULSAM method can realize the pattern classification of analog circuit faults more quickly and accurately.\",\"PeriodicalId\":370921,\"journal\":{\"name\":\"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN45523.2021.9557489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN45523.2021.9557489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高模拟电路故障模式的分类精度,本文提出了一种超轻量化子空间注意模块(ULSAM)分类方法,该方法将轻量化(约简参数)与注意机制相结合,以提高卷积神经网络(CNN)的特征提取和分类性能。本文通过将标准卷积分解为深度卷积(特征提取)和点卷积(特征聚合),使用深度可分离卷积(DWS)。同时,应用注意机制,深度卷积后只使用一个1×1滤波器,可以计算跨通道信息的有效交互,并利用特征映射之间的线性关系避免了多层感知器(MLP)的使用。模拟电路故障模式的应用表明,该方法能够更快速、准确地实现模拟电路故障模式的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fault Recognition of Analog Circuits Based on Ultra-Lightweight Subspace Attention Module
In order to improve the classification accuracy of analog circuit failure modes, this paper proposes an ultra-lightweight subspace attention module (ULSAM) classification method, which combines lightweight (reducing parameters) with attention mechanism to improve convolutional neural networks (CNN) feature extraction and classification performance. This article uses depthwise separable (DWS) convolution, by decomposing the standard convolution into depthwise convolution (feature extraction) and pointwise convolution (feature aggregation). Meanwhile, the attention mechanism is applied, only one 1×1 filter is used after depthwise convolution, which can compute efficient interaction of cross-channel information, and uses the linear relationship between feature maps to avoid the use of multi-layer perceptron (MLP). The application of the failure modes of analog circuits shows that the proposed ULSAM method can realize the pattern classification of analog circuit faults more quickly and accurately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fault Classification for Wind Turbine Benchmark Model Based on Hilbert-Huang Transformation and Support Vector Machine Strategies [INDIN 2021 Front cover] Synergetic Control of Fixed-wing UAVs in the Presence of Wind Disturbances From Face to Face to Hybrid Teaching: an Experience on Process Plant Automation Laboratory Course during Global Pandemic Towards Policy-based Task Self-Reallocation in Dynamic Edge Computing Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1