纳米粒子对冷却塔散热的增强作用

Aravinthan Rajaandra, N. Sidik, S. N. A. Yusof, Muhammadu Masin Muhammadu
{"title":"纳米粒子对冷却塔散热的增强作用","authors":"Aravinthan Rajaandra, N. Sidik, S. N. A. Yusof, Muhammadu Masin Muhammadu","doi":"10.37934/arms.67.1.1125","DOIUrl":null,"url":null,"abstract":"Cooling towers with water as the heat transfer medium are commonly used in various industries for rejecting heat from heat sources to the atmosphere. However, there is much room for improving the performance and efficiency of the cooling towers. One of the less investigated ways in using a water based nanofluid as the heat transfer medium. Nanofluids which are base fluids with nanoparticles added to them has many benefits including increasing the heat rejection and increasing the range of the cooling tower. This has the effect of lowering energy usage and reducing water consumption. In this study, the cooling tower heat rejection process in the infill was simulated using water as the base working fluid, and Multi Walled Carbon Nano Tube (MWCNT)-water nanofluids. It was observed that the heat rejection was improved by up to 40% using 0.1wt% of Multi Walled Carbon Nano Tube (MWCNT)-water nanofluid. It was found that there was an improvement in heat rejection. It can reduce energy usage by up to 20% and reduces energy costs using a similar amount. The results indicate that nanofluids may allow existing and future cooling towers to achieve an improvement in heat rejection performance.","PeriodicalId":176840,"journal":{"name":"Journal of Advanced Research in Materials Science","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of Nanoparticles in Augmentation of Cooling Tower Heat Dissipation\",\"authors\":\"Aravinthan Rajaandra, N. Sidik, S. N. A. Yusof, Muhammadu Masin Muhammadu\",\"doi\":\"10.37934/arms.67.1.1125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cooling towers with water as the heat transfer medium are commonly used in various industries for rejecting heat from heat sources to the atmosphere. However, there is much room for improving the performance and efficiency of the cooling towers. One of the less investigated ways in using a water based nanofluid as the heat transfer medium. Nanofluids which are base fluids with nanoparticles added to them has many benefits including increasing the heat rejection and increasing the range of the cooling tower. This has the effect of lowering energy usage and reducing water consumption. In this study, the cooling tower heat rejection process in the infill was simulated using water as the base working fluid, and Multi Walled Carbon Nano Tube (MWCNT)-water nanofluids. It was observed that the heat rejection was improved by up to 40% using 0.1wt% of Multi Walled Carbon Nano Tube (MWCNT)-water nanofluid. It was found that there was an improvement in heat rejection. It can reduce energy usage by up to 20% and reduces energy costs using a similar amount. The results indicate that nanofluids may allow existing and future cooling towers to achieve an improvement in heat rejection performance.\",\"PeriodicalId\":176840,\"journal\":{\"name\":\"Journal of Advanced Research in Materials Science\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Research in Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37934/arms.67.1.1125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research in Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37934/arms.67.1.1125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

以水为传热介质的冷却塔通常用于各种工业中,用于将热源的热量排除到大气中。然而,冷却塔的性能和效率还有很大的提高空间。使用水基纳米流体作为传热介质的研究较少的方法之一。纳米流体是一种添加了纳米粒子的基础流体,它有许多好处,包括增加散热和增加冷却塔的范围。这有降低能源使用和减少水消耗的效果。采用多壁碳纳米管(MWCNT)-水纳米流体作为基材工作流体,模拟了填料中冷却塔的排热过程。观察到,使用0.1wt%的多壁碳纳米管(MWCNT)-水纳米流体,散热性能提高了40%。结果发现,在散热方面有了改善。它可以减少高达20%的能源使用,并降低能源成本。结果表明,纳米流体可以使现有和未来的冷却塔实现散热性能的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Effect of Nanoparticles in Augmentation of Cooling Tower Heat Dissipation
Cooling towers with water as the heat transfer medium are commonly used in various industries for rejecting heat from heat sources to the atmosphere. However, there is much room for improving the performance and efficiency of the cooling towers. One of the less investigated ways in using a water based nanofluid as the heat transfer medium. Nanofluids which are base fluids with nanoparticles added to them has many benefits including increasing the heat rejection and increasing the range of the cooling tower. This has the effect of lowering energy usage and reducing water consumption. In this study, the cooling tower heat rejection process in the infill was simulated using water as the base working fluid, and Multi Walled Carbon Nano Tube (MWCNT)-water nanofluids. It was observed that the heat rejection was improved by up to 40% using 0.1wt% of Multi Walled Carbon Nano Tube (MWCNT)-water nanofluid. It was found that there was an improvement in heat rejection. It can reduce energy usage by up to 20% and reduces energy costs using a similar amount. The results indicate that nanofluids may allow existing and future cooling towers to achieve an improvement in heat rejection performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Photocatalytic and UV-VIS Optical Properties of Titanium-Silver Doped Composite Synthesized by Hydrothermal Method Enhancement of Acoustic Performance of Oil Palm Frond Natural Fibers by Substitution of Jute Fiber The Effect of Temperature on Catalytic Pyrolysis of HDPE Over Ni/Ce/Al2O3 Concrete Brick Properties Incorporating EPS and POFA as Replacement Materials Impact of Laser Intensities at Various DPI and Pixel Time on the Properties of Denim Garments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1