多分量瞬时频率估计技术在心率变异性分析中的性能评价

Shiying Dong, G. Azemi, B. Lingwood, P. Colditz, B. Boashash
{"title":"多分量瞬时频率估计技术在心率变异性分析中的性能评价","authors":"Shiying Dong, G. Azemi, B. Lingwood, P. Colditz, B. Boashash","doi":"10.1109/ISSPA.2012.6310477","DOIUrl":null,"url":null,"abstract":"Accurate instantaneous frequency (IF) estimation of the non-stationary heart rate signal is important in quantifying the heart rate variability (HRV) measures. This study compares the effectiveness of four IF estimation methods in analyzing HRV signals. Specifically, they are the direct localization of the maximal peaks in the signal time-frequency distribution (TFD), IF estimation based on component linking technique in the TFD, IF estimation using the TFD with optimal windows based on intersection of confidence intervals rule and complex demodulation. Results of applying the IF estimation methods to synthesized and real piglet HRV signals reveal that, the approach using component linking technique outperform the other techniques with respect to the accuracy and implementation. It provides new insights in studying the evolution of the autonomic nervous regulation of the cardiovascular function over time.","PeriodicalId":248763,"journal":{"name":"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Performance evaluation of multi-component instantaneous frequency estimation techniques for heart rate variability analysis\",\"authors\":\"Shiying Dong, G. Azemi, B. Lingwood, P. Colditz, B. Boashash\",\"doi\":\"10.1109/ISSPA.2012.6310477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate instantaneous frequency (IF) estimation of the non-stationary heart rate signal is important in quantifying the heart rate variability (HRV) measures. This study compares the effectiveness of four IF estimation methods in analyzing HRV signals. Specifically, they are the direct localization of the maximal peaks in the signal time-frequency distribution (TFD), IF estimation based on component linking technique in the TFD, IF estimation using the TFD with optimal windows based on intersection of confidence intervals rule and complex demodulation. Results of applying the IF estimation methods to synthesized and real piglet HRV signals reveal that, the approach using component linking technique outperform the other techniques with respect to the accuracy and implementation. It provides new insights in studying the evolution of the autonomic nervous regulation of the cardiovascular function over time.\",\"PeriodicalId\":248763,\"journal\":{\"name\":\"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPA.2012.6310477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2012.6310477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

非平稳心率信号的准确瞬时频率估计对于量化心率变异性(HRV)测量非常重要。本研究比较了四种中频估计方法在HRV信号分析中的有效性。具体来说,它们是信号时频分布(TFD)中最大峰的直接定位、TFD中基于分量连接技术的中频估计、基于置信区间规则和复解调的最优窗口的TFD中频估计。将中频估计方法应用于合成和真实仔猪HRV信号的结果表明,采用分量连接技术的中频估计方法在准确性和可实现性方面优于其他方法。这为研究自主神经对心血管功能的调节随时间的演变提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance evaluation of multi-component instantaneous frequency estimation techniques for heart rate variability analysis
Accurate instantaneous frequency (IF) estimation of the non-stationary heart rate signal is important in quantifying the heart rate variability (HRV) measures. This study compares the effectiveness of four IF estimation methods in analyzing HRV signals. Specifically, they are the direct localization of the maximal peaks in the signal time-frequency distribution (TFD), IF estimation based on component linking technique in the TFD, IF estimation using the TFD with optimal windows based on intersection of confidence intervals rule and complex demodulation. Results of applying the IF estimation methods to synthesized and real piglet HRV signals reveal that, the approach using component linking technique outperform the other techniques with respect to the accuracy and implementation. It provides new insights in studying the evolution of the autonomic nervous regulation of the cardiovascular function over time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online mvbf adaptation under diffuse noise environments with mimo based noise pre-filtering Hierarchical scheme for Arabic text recognition Precoder selection and rank adaptation in MIMO-OFDM Head detection using Kinect camera and its application to fall detection Wavelength and code division multiplexing toward diffuse optical imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1