分类数据的基于稀疏的表示

R. Menon, Shruthi S. Nair, K. Srindhya, M. D. Kaimal
{"title":"分类数据的基于稀疏的表示","authors":"R. Menon, Shruthi S. Nair, K. Srindhya, M. D. Kaimal","doi":"10.1109/RAICS.2013.6745450","DOIUrl":null,"url":null,"abstract":"Over the past few decades, many algorithms have been continuously evolving in the area of machine learning. This is an era of big data which is generated by different applications related to various fields like medicine, the World Wide Web, E-learning networking etc. So, we are still in need for more efficient algorithms which are computationally cost effective and thereby producing faster results. Sparse representation of data is one giant leap toward the search for a solution for big data analysis. The focus of our paper is on algorithms for sparsity-based representation of categorical data. For this, we adopt a concept from the image and signal processing domain called dictionary learning. We have successfully implemented its sparse coding stage which gives the sparse representation of data using Orthogonal Matching Pursuit (OMP) algorithms (both Batch and Cholesky based) and its dictionary update stage using the Singular Value Decomposition (SVD). We have also used a preprocessing stage where we represent the categorical dataset using a vector space model based on the TF-IDF weighting scheme. Our paper demonstrates how input data can be decomposed and approximated as a linear combination of minimum number of elementary columns of a dictionary which so formed will be a compact representation of data. Classification or clustering algorithms can now be easily performed based on the generated sparse coded coefficient matrix or based on the dictionary. We also give a comparison of the dictionary learning algorithm when applying different OMP algorithms. The algorithms are analysed and results are demonstrated by synthetic tests and on real data.","PeriodicalId":184155,"journal":{"name":"2013 IEEE Recent Advances in Intelligent Computational Systems (RAICS)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Sparsity-based representation for categorical data\",\"authors\":\"R. Menon, Shruthi S. Nair, K. Srindhya, M. D. Kaimal\",\"doi\":\"10.1109/RAICS.2013.6745450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past few decades, many algorithms have been continuously evolving in the area of machine learning. This is an era of big data which is generated by different applications related to various fields like medicine, the World Wide Web, E-learning networking etc. So, we are still in need for more efficient algorithms which are computationally cost effective and thereby producing faster results. Sparse representation of data is one giant leap toward the search for a solution for big data analysis. The focus of our paper is on algorithms for sparsity-based representation of categorical data. For this, we adopt a concept from the image and signal processing domain called dictionary learning. We have successfully implemented its sparse coding stage which gives the sparse representation of data using Orthogonal Matching Pursuit (OMP) algorithms (both Batch and Cholesky based) and its dictionary update stage using the Singular Value Decomposition (SVD). We have also used a preprocessing stage where we represent the categorical dataset using a vector space model based on the TF-IDF weighting scheme. Our paper demonstrates how input data can be decomposed and approximated as a linear combination of minimum number of elementary columns of a dictionary which so formed will be a compact representation of data. Classification or clustering algorithms can now be easily performed based on the generated sparse coded coefficient matrix or based on the dictionary. We also give a comparison of the dictionary learning algorithm when applying different OMP algorithms. The algorithms are analysed and results are demonstrated by synthetic tests and on real data.\",\"PeriodicalId\":184155,\"journal\":{\"name\":\"2013 IEEE Recent Advances in Intelligent Computational Systems (RAICS)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Recent Advances in Intelligent Computational Systems (RAICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAICS.2013.6745450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Recent Advances in Intelligent Computational Systems (RAICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAICS.2013.6745450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在过去的几十年里,许多算法在机器学习领域不断发展。这是一个大数据的时代,它是由与各个领域相关的不同应用产生的,如医学、万维网、电子学习网络等。所以,我们仍然需要更有效的算法,计算成本更低,从而产生更快的结果。数据的稀疏表示是寻找大数据分析解决方案的一个巨大飞跃。本文的重点是基于稀疏的分类数据表示算法。为此,我们采用了图像和信号处理领域的一个概念,称为字典学习。我们已经成功地实现了它的稀疏编码阶段,它使用正交匹配追踪(OMP)算法(基于批处理和基于Cholesky)给出数据的稀疏表示,它的字典更新阶段使用奇异值分解(SVD)。我们还使用了预处理阶段,其中我们使用基于TF-IDF加权方案的向量空间模型表示分类数据集。我们的论文演示了如何将输入数据分解并近似为字典中最小基本列数的线性组合,从而形成数据的紧凑表示。现在可以基于生成的稀疏编码系数矩阵或基于字典轻松地执行分类或聚类算法。我们还比较了字典学习算法在应用不同的OMP算法时的表现。通过综合试验和实际数据对算法进行了分析和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sparsity-based representation for categorical data
Over the past few decades, many algorithms have been continuously evolving in the area of machine learning. This is an era of big data which is generated by different applications related to various fields like medicine, the World Wide Web, E-learning networking etc. So, we are still in need for more efficient algorithms which are computationally cost effective and thereby producing faster results. Sparse representation of data is one giant leap toward the search for a solution for big data analysis. The focus of our paper is on algorithms for sparsity-based representation of categorical data. For this, we adopt a concept from the image and signal processing domain called dictionary learning. We have successfully implemented its sparse coding stage which gives the sparse representation of data using Orthogonal Matching Pursuit (OMP) algorithms (both Batch and Cholesky based) and its dictionary update stage using the Singular Value Decomposition (SVD). We have also used a preprocessing stage where we represent the categorical dataset using a vector space model based on the TF-IDF weighting scheme. Our paper demonstrates how input data can be decomposed and approximated as a linear combination of minimum number of elementary columns of a dictionary which so formed will be a compact representation of data. Classification or clustering algorithms can now be easily performed based on the generated sparse coded coefficient matrix or based on the dictionary. We also give a comparison of the dictionary learning algorithm when applying different OMP algorithms. The algorithms are analysed and results are demonstrated by synthetic tests and on real data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic gesture recognition of Indian sign language considering local motion of hand using spatial location of Key Maximum Curvature Points OFDM radio based range and direction sensor for robotics applications A new built in self test pattern generator for low power dissipation and high fault coverage Reconfigurable ultrasonic beamformer Clustering of web sessions by FOGSAA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1